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Foreword

So much has happened since Watson and Crick gave us the structure of DNA in
1953 and a revolutionary new comet—the discipline “molecular biology”—burst into
the bioscience skies. Six decades later, we feel confident that we now understand
the principles of how the string of DNA base letters conveys, from generation to
generation, the information that determines so much of our structure and function.
Yet, as I write this Foreword to Professor Battail’s timely book, the biosciences are in
crisis over the simple four-letter word “junk.” Since only 1–2 % of the string of DNA
base letters seems to be necessary for conveying the classical genes needed for many
of our day-to-day functions, it was for long convenient to dismiss the remainder as
mere “junk”—DNA that had come along for the ride, but was not critical for our long-
term survival. However, over the last decade growing evidence that the extra DNA
does not remain silent, but is transcribed into RNA copies, has shaken the junksters
from their complacency and strengthened the arguments of those who regard “junk”
as a miasmic comfort-word that has served both to mislead the credulous and to
justify an undue focus of resources on genes.

When a discipline is in crisis, there are two broad strategies to follow. (1) Go “back
to square one” and trace step-by-step how the crisis came about – that is, examine
the history. (2) Seek cross-boundary insights from other disciplines. Of course, over
the decades numerous disciplines have jostled to bridge the trans-disciplinary gap
for molecular biology. Biochemists complained that the molecular biologists were
merely practicing their biochemical arts without licence. Mathematicians, foreseeing
easy pickings, migrated into many areas, especially genetics. But instead of unifica-
tion, the boundaries seemed to grow greater. Unhappy with the complex calculations
of the mathematical geneticists, the biochemists retreated to their laboratories, where
single bands on gels could provide clear, all-or-none, answers. Unhappy with the
biological and chemical details, the geneticists invoked fancy fudge-factors and cosy
coefficients, to cope with the discrepancies that so often appeared.?

Meanwhile, slowly and relentlessly, what is now recognized as the information
revolution overtook us all. We were reminded of its relevance to the biological
sciences by texts such as Werner Loewenstein’s The Touchstone of Life. Molecular
Information, Cell Communication, and the Foundations of Life (1999) and Hans
Christian von Baeyer’s Information. The New Language of Science (2003). These
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vi Foreword

have recently been joined by James Gleick’s popular The Information. A History, A
Theory, A Flood (2012). To these works, directed to wide audiences, there is now
need for the addition of more advanced texts, ideally authored by people deeply
immersed in both the information sciences and the biosciences. But given the human
difficulty of achieving such broad mastery, at this time we must look to workers at the
interface between these two areas, who invariably have strength mainly in one. My
text, Evolutionary Bioinformatics (2006, 2011) provided a bioscientist’s perspective.
Now we have Gérard Battail’s Information and Life which covers the same area from
the perspective of an information scientist. These two complementary books, backed
by many others, herald the emergence of a new interface science for which I have
tentatively suggested the name “Evolutionary Bioinformatics.”

Of course, from speaking of information it is but a short step to what many would
regard as the ultimate frontier in the biosciences, the understanding of cognition
and the fundamental brain biochemistry and physiology that underlies it. Yet, as
neuroscientist Stuart Firestein makes clear in Ignorance, How It Drives Science
(1912), despite the hype by “the spike analysis industry” that “the language of the
brain” is within our grasp, the discipline of neuroscience is also in crisis. While
Battail does not directly address this, there can be little doubt that the information
theory he so carefully outlines will be no less important for neuroscience than for
the other biosciences.

Finally, it should be noted that, while his earlier book—Théorie de l’information
(1997)—was in French, the present is in English. Battail has first-hand knowledge
of scientific literatures other than the rather inward-looking English literature. Thus,
his transdisciplinary perspective carries an international flavor. His title Information
and Life may seem ambitious to some, but I can think of no better way of expressing
the broad swath of ideas that so richly adorn his pages.

Queen’s University, Kingston, Canada Donald R. Forsdyke
March 2013



Preface

An engineer’s approach to fundamental biology could well define the content of this
book. I taught during 23 years theoretical disciplines of communication engineering
at the Ecole nationale supérieure des Télécommunications (ENST) in Paris, espe-
cially information theory and error-correction coding; the latter was my main field
of research. As a faculty member of a college of engineering, I limited my research
activities to the engineering field. When I retired in 1997, I felt free to escape it
and I undertook applying information theory and error-correcting codes to topics of
broader significance, especially to biology. The reader will hopefully soon realize
that, contrary to what may seem, there is a true continuity between communication
engineering and some very basic biological problems.

The present book is thus a fruit of my retirement. My motivation for writing it
was twofold. On the negative side, a sharp dissatisfaction about the trend of science
towards increasing specialization, which results in its fragmentation into narrow
subdisciplines which eventually become autistic to each others. Nothing prevents
such subdisciplines to reach mutually incompatible conclusions. This situation makes
extremely difficult to have a general view on science; even most philosophers seem to
have given up. I think however, with Murray Gell-Mann, that ‘it is vitally important
that we supplement our specialized studies with serious attempts to take a crude
look at the whole’. On the positive side, I think that information theory is as general
and transdisciplinary as to help acquiring such a look and, moreover, that its use is
mandatory in natural sciences, especially for understanding life.

My background is thus communication engineering. I nevertheless dare question
biology and to some extent physics since I think that these sciences need the lessons
of communication engineering and information theory, all the more they can be a
strong antidote to their ever increasing specialization. Since I am not a biologist nor
a physicist, my questions about biology and physics are naive. For lack of working
experience, my knowledge of these sciences mainly relies on popularizing books.
Such documents should be cautiously used and cannot reflect the latest researches.
However, I compensate my lack of practical knowledge of these sciences, as far as
I can, with my own experience. My position with respect to biology and physics
is that of an observer from outside, similarly to that of a philosopher, except that
my background in communication engineering hopefully provides usable concepts,
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viii Preface

perspective and methods. This is a rather uncomfortable position. It turns out that
letting biologists and physicists accept lessons from engineering is especially diffi-
cult. It may be a legacy of the Greco-Roman antiquity when engineering was the lot
of slaves, while philosophy (including science in its modern meaning) was a noble
activity of the free citizens. Prejudices are long-lived, so 25 centuries later science
is most often perceived as creating ideas to be later exploited by engineers, while
the upholders of ‘pure’ scientific disciplines ignore or refuse that concepts possibly
useful to them could originate in engineering.

A major difficulty I met when I began writing this book is that information theory
has never been adequately popularized, to a large extent because this is extremely
difficult. Information theory is a mathematical discipline, hence basically abstract.
Moreover its main object—information—is rather elusive. My first task has thus been
to popularize the main topics of information theory which can be useful to biologists,
and it is what I do in the first part of the book. The word ‘information’ has become
very common and polysemic. Restrictions with respect to the usual meanings of a
word are necessary for defining a scientific entity, and the definition I propose is not
straightforward and rather abstract. Such lexical difficulties are unavoidable since a
precise vocabulary is mandatory.

Besides attempting to popularize information theory, the remainder of the book
intends to improve the understanding of the living world. At the light of information
theory, mainstream biology is shown to inadequately account for the most important
and specific phenomenon of life: heredity. Reconstructing biology in an information-
theoretic perspective thus appeared to me as necessary, leading to a formidable
research agenda as regards both the broadness of its scope and the amount of difficult
work it demanded. Only a small part of it has actually been performed. This book can
thus by no means be claimed to be exhaustive, but is hopefully forerunner. It could at
best skim over the matter: introduce information theory as simply and intuitively as
possible and merely deal with a few easy examples of its application to biology. I hope
that it will prompt broader and deeper researches, at the risk of its own obsolescence.
My first project was to also discuss a few applications to physics, but there was too
much work still to be done, so I stopped at the border between the living and the
inanimate. As I progressed in my writing, I discovered that many other topics were
worth being dealt with so the completion of the book was for me a kind of horizon
seeming to move back as I moved forward. No wonder if the finished book looks
incomplete and calls for further researches.

In its part intended to popularize information theory, this book contains few formal
proofs, which can be found in more technical works. However, everywhere it is
possible, remarks are intended to help the reader to intuitively understand why the
written statements are true. Such remarks cannot be substituted for formal proofs
but, as based on them, hopefully show the logical necessity of the statements and
their coherence.

No great efforts have been made to avoid redundancy. Besides being very useful
in communication engineering, it has also the didactic virtue of helping the reader’s
understanding. I tried of course to avoid mere repetition and to present the same
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concepts from changing points of view in order to hopefully provide more insight
into them.

As a Frenchman, I have an easy access to documents written in my first language,
and it is why the bibliography contains a rather unusual number of papers and books in
French. No bibliography can be claimed to be exhaustive so, inevitably, it is somehow
biased. In any way, besides prompting biologists to get interested in information
theory and making their access to it as easy as possible, my project was to expound
my own researches and not to objectively compile references. Most works referred to
in this bibliography are those that I read when I wrote the book, but some of them are
referred to because of their historical importance. Compilations like (Favareau 2010,
Sloane and Wyner 1993, and Slepian 1974) were especially useful in this respect.

I would like to sincerely thank all those who manifested interest in my work or gave
me opportunities to expound and exchange ideas, especially Claude Berrou, John D.
Enderle, Paddy Farrell, Donald R. Forsdyke, David Haccoun, Joachim Hagenauer,
Jean-Michel Labouygues, Vittorio Luzzati, Elebeoba E. May, Olgica Milenkovic,
Mark E. Samuels, Tom Schneider, Karoline Wiesner and Hubert P. Yockey. I am
indebted to Antoine Danchin who prompted me to contact Daniel Mange at the
Ecole Polytechnique Fédérale in Lausanne, Switzerland, who let me meet Marcello
Barbieri of the University of Ferrara, Italy. Marcello Barbieri friendly invited me to
expound my research at the 2005 Biosemiotics Gathering in Urbino and prompted
me later to write the present book. Still more important, his ideas had a determining
influence on my work. His bold statement that ‘Nature is artefact-making’ closely
agrees with my own intuition that biology and engineering should go hand in hand.
Besides, at least two very important concepts in his work were especially appealing
to me, as being in resonance with some of my own ideas: that of nominable entity and
that of organic codes. I found no better way than the former to qualify an information.
As regards the latter, I independently suggested the existence in the living world of
‘nested soft codes’ which turn out to be very similar to Barbieri’s ‘organic codes’.
This convergence is all the more interesting since he and I arrived at these concepts
from entirely different backgrounds, by entirely different ways.

I am extremely grateful to Professor Donald R. Forsdyke who accepted to write
a foreword to this book.
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Chapter 1
Introduction

Abstract Chapter 1 expounds the aim of the book: defining information as a scien-
tific entity and using it for explaining life phenomena. The science of communication
engineering, Shannon’s information theory, is available to this end but must be some-
what extended, especially as regards the identification of the specific properties which
can be used for defining information as a scientific entity. As a mathematical disci-
pline, information theory can hopefully provide biology with a yet lacking theoretical
basis. Communication engineering is only concerned with literal communication so
information theory excludes semantics. The relation of semantics with information
must thus be explicated.

1.1 Aim of the Book

It is commonplace to refer to the current civilization as the information era. News
from everywhere are broadcast everywhere in the world. Electronic mail connects
each of us with people regardless of distance. If we think of information as ‘what
is communicated’, then information is one of the most familiar and omnipresent
entities of our daily lifes.

If we think of information as the expected result of any investigation, and espe-
cially of scientific research, we may wonder whether information itself can be an
object of research. The question may look incongruous, or even logically circular.
Does a science of information exist? If it does, is it connected with the sciences of
nature, physics and biology and, if it is, what is and what can be its impact on them?
This book intends to take up such questions.

A science of information actually exists, initiated in 1948 when Claude Shannon
(1916–2001) published his seminal paper A mathematical theory of communication
(Shannon 1948). It is referred to as information theory. As a theory of communi-
cation means, it is at the heart of communication engineering. Together with the
semi-conductor technology which enabled its implementation, it is the main event
from which the information era originated. Despite its conceptual and practical
importance, however, information theory remains ill-known outside the commu-
nication engineering community, even by educated people. Although information
theory is embodied in electronic objects of daily use, it remains invisible. We think
that information is a scientific entity of capital importance. Its lack of visibility is
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unfortunate because it could be extremely useful in many branches of science besides
communication engineering. This book will hopefully help bridging this gap.

Information theory has indeed never been properly popularized, to a large extent
because it is a very difficult task. Besides the difficulties intrinsic to the abstractness
of a mathematical discipline, the polysemy of the word ‘information’ as well as its
often loose use are among the main obstacles in popularizing information theory.
The main difficulty comes from the need of restricting the meaning of the word
‘information’ in order to make it as precise and unambiguous as to define a scientific
entity. We tried to do so in the first part of this book. With the tremendous development
of communications, the word ‘information’ has become trivial and almost nobody
cares of what it really means. Everyone believes he/she understands it, just like
Augustine believed he understood the meaning of ‘time’ untill he realized he was
unable to explicate it. It is also quite difficult to communicate the experience gained by
communication engineers during the last decades, during which the formal concepts
of the theory were found to perfectly fit the needs of communication practice, and
its quantitative predictions were accurately checked.

Probably the main obstacle met when attempting to popularize information theory
is that it demands a methodological precaution often perceived as a sacrifice: seman-
tics should be discarded from information. Is not meaning for all and sundry the very
essence of information? What is information without semantics? Communication
engineers know by experience that semantics is foreign to their activity. Discarding
semantics even appears for them as having cut the Gordian knot, making their disci-
pline possible and successful. But can this reasonable faith be communicated to the
layman? Philosophers and even scientists of other disciplines often reject this basic
tenet and therefore ignore information theory. For lack of adequate popularization of
communication engineering and information theory, they do not realize that doing
so makes them blind to a major scientific and engineering achievement. One of the
main goals of this book is to make the principles of communication engineering and
information theory understandable without too many technical details, and especially
with a limited use of mathematical formalism.

Of course, the scientific concept of information notably differs from the usual
meanings of the word. The radical dissociation of information from semantics has
been accepted by engineers only inasmuch as it is fully successful. In this respect, the
status of information is not so different from that of other scientific entities. Think for
instance of the fundamental physical concept of energy. Energy can be mechanical
(potential or kinetic), electrical, electromagnetic, chemical, thermal, . . . , but these
various forms are considered as diverse embodiments of a single entity on the basis
of an equivalence principle: they can be converted into each others and thus can be
quantitatively measured using a same unit. Unlike the concept of matter which can be
thought of as directly deriving from the sensible intuition, it actually took centuries
before the concept of energy emerges and becomes a fundamental physical entity.
If we now accept it, it is because it has demonstrated in innumerable instances its
necessity for describing and predicting physical facts. It has become familiar with
time, but its scientific meaning is definitely different from the looser and broader
usual meaning of the word ‘energy’.
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Besides the goal of popularizing the principles of communication engineering and
information theory, this book intends to use them in order to improve the understand-
ing of the living world. At first sight, life may seem quite foreign to engineering.
But is the evolution process which created the living world so different from en-
gineering? Evolution actually met and necessarily solved engineering problems,
admittedly using methods foreign to those of humans. Both human engineers and
Nature created objects which perform functions, fulfilling an a priori given purpose
in the former case, or in the latter carrying out specific tasks which together result
in the perpetuation of living processes. How each of these tasks is performed can be
analyzed in engineering terms. Moreover, these tasks must be closely coordinated,
which implies communications between the individual objects which perform them
(organelles, cells, tissues, organs, . . . ). Nature thus necessarily evolved extremely
varied and complex communication means and it turns out that describing the living
world must increasingly often involve communication at all scales from the molecules
up to the ecosystems and advanced animal societies, including the human ones. The
results of information theory, which often state the limits of what is possible, are as
general as to apply to any communication system regardless of its origin and its im-
plementation means. Information theory perfectly fits communication engineering,
and its generality makes it relevant to natural communication means as well. As a
consequence, they are subjected to the limits stated by information theory. Then, as
a fundamental scientific entity, information appears as necessarily having a central
role in biology. Mainstream biology ignores the concepts and results of information
theory although the word ‘information’ has become omnipresent in the biological
literature, but it is almost always used in a loose meaning. Reconstructing biology
in an information-theoretic perspective appears as a necessary (and immense) task.

My experience in communication engineering and information theory led me
soon to realize that genetics and evolution could not be understood unless a genomic
error-correction system is assumed to exist. When I started writing this book, I
mainly intended to develop this idea. It became however increasingly clear to me
that, much more generally, information is a fundamental scientific entity that biology
needs but as yet ignores, and moreover ignores that it needs it. My initial project
was a three-part book, the third one being devoted to applications of information
theory to physics. Having almost completed the first two parts, respectively devoted
to the science of information and to some of its biological applications, I realized
that dealing with physics would need much more further research, so I gave up, at
least provisionally. It is why the present book is limited to two parts. However, it
will be argued that whether information is used or not actually delineates the border
between the living and the inanimate, so physics will be present at its interface with
biology. It will be shown that any living thing actually acts as Maxwell’s demon
(I resumed here an old project of continuing the work of Léon Brillouin (Brillouin
1956), and it turns out that I reached conclusions very different from his). A physical
measurement, moreover, can be interpreted as a means for an observer to acquire
information about an object of the inanimate world. As the observer belongs to the
living world, the border between these two worlds must be crossed. It is why an
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informational theory of physical measurement, hopefully containing the seeds of
future researches, is outlined in Chap. 10.

Further exploiting the idea that information is a fundamental scientific entity
needed for understanding life leads to conclude that it actually delineates the border
between the living and the inanimate: living things bear, process and use information,
inanimate objects do not (except of course those which have their origin in the living
world, mostly as products of the human industry fabricated for this purpose). Since
the living world is but a part of the physical world, this implies that physics itself
must accept information as a fundamental scientific entity. Physicists realized since
the beginning of the XX-th century that the human observer must be considered as an
actor of any physical measurement. An observer belongs of course to the living world
and a measurement is a means for acquiring information from the physical world.
The revolution which we claim to be necessary in biology thus cannot leave physics
itself unchanged. Any theory of measurement in physical sciences must integrate
information theory. It is why this book was initially intended to the integration of
information theory within physics as well as biology. However I gave up due to the
amount of work required by physics, so the book is mainly restricted to biology,
which has a more straightforward relation to information.

Information is not only a scientific entity yet almost completely overlooked, but
it possesses properties radically different from those of matter and energy. The main
one is that it does not obey any conservation law since an information can be copied,
hence shared, as well as annihilated. We show below that these properties directly
result in the main specific features of the living world. Ignoring information, main-
stream biology thus ignores the main entity which governs life! It must be realized
that, as a branch of mathematics, information theory is a normative science: its
statements are as compelling as those of arithmetic. As an expected result, the math-
ematical character of information theory will hopefully endow biology with a level
of rigour and structure comparable to that attained by physics in its own field. Most
of the results of information theory concern the limits of what is possible, which are
sharply defined and impassable. Today’s physics does not ignore information and
many physicists recognize it as fundamental, but deal with it as a physical quantity.
Strangely, they often deny life as if the laws of physics would suffice to explain
everything in the universe. To say the least, the relationship of physics and life lacks
clarity.

Information will appear to us as providing the unique bridge between the abstract
and the concrete. Writing about information thus demands extreme care for avoid-
ing any confusion between both, a concern which does not always inspire writing
scientific treatises. Reading this book needs to keep in mind that information is dealt
with as an abstract entity.

Reflections about information contained in this book result in a critical look
at the bases of contemporary science. Far from purely negative, such criticisms
fortunately open to research the immense field of integrating information within sci-
ence, as a fundamental entity. A new world is to be discovered, with unforeseeable
consequences.
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1.2 About the Method

Bringing to light the fundamental importance in biology of a mathematical entity,
information, entails that methods using simplified models dealt with by mathematics
and computer simulation, which proved extremely successful in physics and engi-
neering, should be useful in biology, too. Some current beliefs in biology which are
only justified by an argument expressed in textual form may well not resist the test
of a computation based on appropriate models. This book contains two examples of
this approach, but it could be useful in many other instances.

As a first example, an important statement in this book is that the existence of DNA
mutations in somatic cells within time intervals as short as a human life is absolutely
incompatible with the conservation of genomes at the timescale of geology. We per-
ceive this contradiction as obvious but many biologists do not, and deny it without
any rational reason. Since this incompatibility can be solved only by assuming that
genomes are endowed with error-correcting codes, they also reject this conclusion
although it is inescapable once the incompatibility is established. In Sect. 8.1.2, we
intend to confirm this incompatibility by means of information-theoretic arguments.
It turns out that precisely describing the hereditary communication channel is impos-
sible for lack of knowing by what kind of errors the DNA nucleotides are affected.
However, we want only to show that the quantity which measures the ability of a
channel to convey information, its capacity as defined by information theory, de-
creases with time and eventually vanishes. In order to show that it does, it suffices to
prove that an upper bound to the actual capacity behaves so. An upper bound results
from assuming in the capacity computation that the errors are of the mildest possible
type, namely erasures, although we do not know the kind of the errors which actually
occur.

As a second example, we develop in Sect. 8.3 some computations concerning an
extremely simplified model of heredity we name ‘toy living world’. These calcula-
tions show that only the assumption that genomic error-correcting codes exist can
explain the existence of discrete species. Although extremely simplified, this model
hints at actual properties of the true living world. Would such codes not exist, the
living world would be an incomprehensible chaos populated with chimeras.

In both cases we make use of very simplified and easily computable models so as to
acquire knowledge about a far more complex reality. Such methods are commonplace
in physics and engineering, but are not familiar to biologists although they could be
extremely useful to them. Moreover, designing a model demands a reflection about
what is important or not, and considering a few possible models can help choosing
the one which most closely approaches reality.

Some comments about orders of magnitude will perhaps be useful to the reader. A
book devoted to astronomy or cosmology refers to distances, durations and numbers
of objects as large as completely escaping our sensible intuition. Still much larger
numbers of objects, however, will be met in this book when considering the many
different sequences that the genetic material can assume. Inconceivably numerous
combinations can indeed arise from comparatively small genomes. Only very few
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of them are actually realized, which hints at the pervasive presence of redundancy,
an extremely important but ill-known property of living objects. We do not perceive
this situation as strange because the same is true in language where, among all
the possible combinations of phonemes, letters, words, only very few are actually
compatible with linguistic constraints. High redundancy is so present in our daily
life that we do not even notice its existence.

Readers may deem that some parts of the book, especially in Chaps. 3, 4 and 5 are
too technical when describing transmission and reception processes. Other readers,
or possibly the same ones, may deem that the last chapters of the book, especially
Chaps. 9 and 10, are too philosophical as questioning the epistemological status
of information. The technical details may be justified by the aim of showing that
the principles of communication engineering and information theory are actually
implemented in operational devices now become of daily use, hence are not mere
intellectual speculations. As regards the status of information, recognizing it as an
abstract entity is mandatory for understanding that it provides a bridge between the
abstract and the concrete. It can thus act on physical objects, which suggests an
‘explanation’ to life. Readers, of course, may skip what they want.

1.3 On the Book Content

Most of the topics dealt with in this book have already been published in a number
of papers (Battail 1997, 2001, 2004, 2005, 2006a, b, 2007a, b, 2008a, b, 2009a, b,
2010, 2011, 2012) and a short book (Battail 2008c). An easy way to carry out my
present book project could have been to merely collect the papers. For the sake of
unity, I preferred however to gather their content into an entirely rewritten synthesis
hopefully avoiding too technical details. This book thus contains many parts of
previous publications, more or less transformed to fulfill its goals. However, it also
contains new material, and the need of synthesis led me on some important points to
more general and more radical conclusions than those previously published.

The first part starts from a common use of the word ‘information’ to examine
features which can be exploited for endowing information with the status of a scien-
tific entity (Chap. 2). The next chapter does not directly deal with information, but
states the basic principles of communication engineering and examines how literal
communication can be ensured (Chap. 3). Emphasis is laid on the fact that recep-
tion, far from being a passive function, cannot be understood outside a probabilisic
framework. It thus results in decisions which may be wrong. Then, Chaps. 4 and 5
introduce information theory as the science of literal communication, according to
Shannon’s original probabilistic version. The last chapter of the first part, Chap. 6,
deals with information as a fundamental entity. It begins with an algorithmic version
of information theory which complements the probabilistic one, each giving some
insight about the other. Since any application of information theory needs that the
relationship of information with other conceptual and physical entities is properly
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understood, this chapter questions the relationship of information with semantics, in
a very broad meaning including its interaction with the physical world. Information
then appears as a bridge between the abstract and the concrete.

Chapter 7 introduces the second part. Then, as a typical example of how results
of information theory can be applied to a fundamental problem of life, Chap. 8 is de-
voted to heredity. It shows that the faithful conservation of genomes at the geological
timescale cannot result from the mere replication of DNA molecules, as currently be-
lieved. A blatant contradiction between the assumed conservation of genomes and the
presence of mutations is pointed out, and it is shown that information theory demands
that genomes, as digital messages, are actually endowed with error-correcting codes.
Assuming their existence then suffices for explaining many actual basic properties
of the living world. Chapter 9 states that information is specific to life and actually
delineates the border between the living and the inanimate. Chapter 10 considers
the place of life within the physical world, and interprets a physical measurement
as a means for a living observer to acquire information beyond the living-inanimate
border. Chapter 11 concludes the whole book.

There are three appendices besides the index. Appendix A, ‘Tribute to Shannon’,
is a slightly corrected version of a text I wrote just after Shannon’s death in February
2001, which has not been published in print. It may look somewhat redundant with
respect to the account of information theory presented in the first part of this book,
but I preferred keeping it unabridged as expressing my thoughts at that time, some
of which were the seeds of the present book. Some footnotes have been appended
to the original text. The second one, Appendix B, ‘Some comments about mathe-
matics’, questions the relevance of mathematics for describing natural features; it is
also intended to recall some definitions which are necessary for understanding the
few mathematical concepts used in the book, and to explicate the notations. The
third Appendix C, is a short glossary intended to sketchily recall the main topics of
molecular genetics.
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Information as a Scientific Entity



Chapter 2
What is Information?

Abstract Chapter 2 examines how the most current use of the word ‘information’can
lead to outline an axiomatic definition of information. Its most specific features are
that it has no existence unless it is physically inscribed as a sequence of symbols on
some medium, which however has no influence on it besides ensuring its existence,
and that it can be defined only as an equivalence class, with respect to transforma-
tions like alphabet change and coding. It is thus an abstract entity which resides in
the physical world. An information meets Barbieri’s concept of ‘nominable entity’,
which refers to a singular object. This concept is explicated and illustrated. A natural
number can be used, besides its usual meanings of representing a quantity (cardinal
number) or a rank in a sequence (ordinal number), as a label uniquely representing a
nominable entity. The uniqueness of nominable entities entails that their representa-
tives do not suffer any change and thus must be protected against any perturbation.
A short history of communication engineering, which developed the means of such a
protection referred to as ‘error-correcting codes’, is briefly presented. It is also stated
that the theoretical tools needed in order to deal with communication at a distance
can be used as well for communication over time such as biological heredity.

2.1 Information in a Usual Meaning

We think it is helpful to begin a discussion of the information concept with examining
a usual meaning of the word ‘information’ so as to determine what of its features
endow it with the status of a scientific entity. Maybe the most familiar modern
use of the word concerns mass media where an information consists of telling that
some event has occurred and/or of reporting its circumstances. Some source then
transmits some spoken or written text, or a succession of sounds and/or images, i.e.,
some message, in order to let know something to some recipient. A characteristic
feature of an information is that it is new for its recipient or, more precisely, that a
message is perceived as an information only if it is new. (Indeed, the word ‘news’
is used as a synonymous of ‘information’ in this meaning.) We may think of an
information as increasing the recipient’s knowledge inasmuch as he/she is able and
willing to memorize it. The main feature of information, the meaning conveyed by the
message, escapes any measurement and can be thought of as intrinsically qualitative.
What can be measured, however, is how infrequent or unexpected it is: for instance,
‘a man bites a dog’ is much more informative than ‘a dog bites a man’ which refers

G. Battail, Information and Life, DOI 10.1007/978-94-007-7040-9_2, 11
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to a more frequent event. If the probability of the reported event can be assessed,
its unexpectedness can be measured by its improbability. This is how information is
quantitatively measured according to Shannon (1948) (see Sect. 4.2.1 below).

A characteristic feature of an information in this meaning is that the reported event
and its circumstances are only perceived by the recipient through the agency of a
message conveyed by a channel. In the important case where this message consists
of a sequence of symbols1, like a spoken or written text, we will refer to the informa-
tion as ‘symbolic’. Then, the message consists of a sequence of symbols which can
evoke the reported event in the recipient’s mind, although there is no causal relation
between the message and the event in the physical world. This is possible only in-
sofar as the recipient can understand this message, i.e., provided the source and the
recipient share a common linguistic system which consists of a set of conventional
rules. The message has then a meaning within, and only within, this system. At the
recipient’s end, a communication thus involves two successive steps: the message
has first to be received; then, using linguistic rules enables perceiving its intended
meaning. The first step is performed by processing the channel output and results in
making the message available to the recipient. The second step involves using the
linguistic rules obeyed by the source for recovering the intended meaning, given the
received message. Clearly, the first step is a mandatory prerequisite to the second
one. It is easily overlooked as seemingly trivial, but communication engineers know
by experience that it is far from being so. It should be emphasized that these two
steps concern entirely different functions. Dealing separately with such unrelated
problems is not only possible, but it is a methodological necessity. The competence
of information theory is restricted to the first step of delivering the message to its
intended recipient. We refer to this function as ‘literal communication’. As not in-
volved at this step, the recipient is no longer necessarily a living being (especially
a human), but may be a machine as well. In any way, the literal communication
between the source and the destination can entirely ignore linguistic and semantic
aspects, hence the possible meaning of the message does not matter for it.

Still another fundamental property of an information is that it is non-autonomous.
It is necessarily embodied within some physical medium which can be made of sev-
eral different substances, devices or waves, and assume several forms. For instance
a text can be written or spoken. The written text is made of a succession of visible
marks of conventional shapes on some sheet of paper or computer screen, while
the spoken text is represented by a succession in time of acoustic waveforms by the
agency of which a listener can perceive the text. Admittedly, the spoken text has
specific features like pitch, timbre, rhythm, intonation, accent, . . . that the written
one lacks, but as an information the text itself is common to both. In the technical
field, a symbolic sequence can be recorded in the form of a binary sequence in the
memory of a computer, then read and broadcast, for instance, as a 4-phase modu-
lated electromagnetic wave. Then, both the alphabet size and the very nature of the
physical medium which bears an information can be modified: the computer mem-
ory and the electromagnetic wave then bear the same information. In the absence of

1 A symbol is an element of some given finite set of distinct objects, referred to as an alphabet.
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any physical medium, however, an information cannot have any interaction with any
material device or observer. Even our most abstract thoughts manifest themselves by
the activity of neurons in our brain. We may say that no information exists unless it
is borne by a physical medium, this remark being used for explicating what is meant
here by the existence of an information. In what follows we refer to the physical
bearer of an information as its support.

This way of defining existence meets a fundamental concept of Buddhist phi-
losophy, according to Matthieu Ricard and Xuan Thuan Trinh (Trinh 2011, Ricard
and Trinh 2002). It also complies with Carlo Rovelli’s relational point of view on
physics (Rovelli 2004) which has roots in ancient Eastern philosophy, too. Ref.
(Ricard and Trinh 2002, p. 46) contains indeed the following quotation from the
Indian philosopher Nagarjuna, who lived in the second century: ‘Phenomena draw
their nature from a mutual dependence and are nothing by themselves.’

2.2 Features of Information as a Scientific Entity

The few simple remarks above suffice for endowing the concept of information with
the status of a scientific entity, and especially for founding a quantitative theory of
information. As stated above, only finite alphabets are contemplated. This restriction
entails that only discrete information is considered in this book although the theory
has been fruitfully extended to continuous information. We prefer not to deal with
this extension, which is not needed in the examples considered in this book, because
it involves mathematical difficulties and some of its results are weaker than the
homologous ones of the discrete case. Other applications to biology or physics would
nevertheless need the extension of information to continuous random variables.

Dissociating information and meaning The first remark above enabled us to dis-
tinguish literal and semantic communication, and to state they are unrelated. Then,
literal communication constitutes in itself a function which can be dealt with indepen-
dently of any semantic consideration. In what follows, the word ‘information’ will
be restricted to designate what can be literally communicated, and the mathematical
theory of literal communication will be referred to as information theory.

This founding divide has been clearly stated by Shannon. He did not deny that
information has something to do with meaning, of course, but he realized that com-
munication engineering is entirely foreign to semantics. He wrote in the very first
page of his seminal paper (Shannon 1948):

The fundamental problem of communication is that of reproducing at one point either ex-
actly or approximately a message selected at another point. Frequently the messages have
meaning; that is they refer to or are correlated according to some system with certain phys-
ical or conceptual entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is one selected from a
set of possible messages. The system must be designed to operate for each possible selection,
not just the one which will actually be chosen since this is unknown at the time of design.
(Shannon’s italics.)
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‘Communication’ is intended here in its engineering meaning of literal communi-
cation, foreign to the philosophical problems of semantics. Information processing
devices and quantitative information measures are relevant only to the former. In-
deed, a messenger has not to know about the content of the message he or she carries,
and the same is true for communication machines, all the more semantics is intrin-
sically foreign to them. Ignoring semantics simply made information theory and its
innumerable engineering applications possible, enabling the use of mathematical
means for dealing with literal communication.

An information needs a physical medium but does not otherwise depend on it
Indeed, an information has no existence (in the above meaning) unless it is borne by
a physical medium, but a given information can be borne by any medium. In other
words, an information is invariant with respect to the medium which bears it. It is
thus an entity in itself. A medium is needed for embodying an information, but has
no influence on it beyond securing its existence.

That an information does not exist unless it is borne by some physical medium, one
of our basic postulates, sharply contradicts the common perception of informations
(or of ideas) as purely abstract entities. For instance, no physical medium is as large
as to memorize the immense knowledge that Laplace’s omniscient demon is assumed
to possess (see Sect. 6.3 below), so this demon cannot be but a pure spirit, hence
foreign to the physical world. Stating that ‘Information is physical’, Landauer has
to be credited for having challenged this opinion2 (Landauer 1996). We are far from
endorsing Landauer’s statement, however, deeming instead that information needs to
be physically inscribed. This statement is quite different from Landauer’s but departs
from idealism and similarly intends to anchor information within the physical world.
We criticize Landauer’s statement in Sect. 2.3 below.

Information is not conserved and can be shared Since its very existence de-
pends on the medium which bears it, an information is annihilated if this medium
is destroyed or incurs any change which alters the information it bears (altering an
information, according to our viewpoint, replaces it by another one). Thus, contrary
to many entities met in physics, information is not conserved. On the other hand, an
information written on some medium can be copied on another one without being
lost. An information can be copied several times so it can proliferate, meaning that the
same information is borne by several different supports in increasing number. Prolif-
eration does not mean any increase of information quantity, but that an information
can be simultaneously borne by several supports. It is only when differences among
the set of copies of a same information are created that the quantity of information
it bears increases.

The ability of information to proliferate entails in the living world the ability of
individuals to proliferate, which is a characteristic attribute of life. It is only because
we deal with information as an abstract entity that we can reach this conclusion.

2 In the information-theoretic literature. Physicists do not even ask the question whether information
is a physical entity but deal with it as such, following Schrödinger and Brillouin.
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Dealing with information as physical as did Landauer has not this consequence,
hence is not adequate for biological applications.

An information as an equivalence class We notice that an information is invariant
with respect to:

a) the physical nature of the medium which bears it (e.g., computer memory, acoustic
or electromagnetic wave, sheet of paper, . . .);

b) the alphabet size, which can be arbitrarily chosen for its practical convenience.
For instance the binary alphabet is very convenient in operations performed by
computers, but quite inconvenient for humans who prefer alphabets of larger size
like the Latin one which are much better fitted to their perceptive performance.
It is why programming languages contain instructions written in the Latin alpha-
bet which are later converted into sequences of binary digits which control the
machine;

c) for a given alphabet size, the possible transformation of a sequence into another
equivalent one, related to the original sequence by a one-to-one correspondence
according to some encoding rule.

Properties of invariance are, by essence, cumulative. The invariance stated by (a) and
(b) is just a rewording of the above remarks. That stated by (c) is the most important
but it is also the less obvious. It is why we will lay emphasis on it, especially in
its form referred to as channel coding, in Sect. 3.4 and in Chap. 5 below. An entity
defined as the set of elements which are invariant with respect to a transformation
is referred to as an equivalence class. (Defining an equivalence class is a standard
means for creating a mathematical object.)

Then an information is an equivalence class of sequences with respect to trans-
formations a), b) and c). Dealing with an equivalence class implies designating a
representative of it, which may be any of its elements. The most convenient rep-
resentative of an information is the shortest binary sequence which belongs to its
equivalence class, to be referred to as its information message (the physical medium
needs not be specified as irrelevant to information theory, which by essence is math-
ematical). The symbols of the information message are necessarily independent3

because, if they were not, source coding could transform it into a shorter one (see
Sect. 4.3 below).

It should be kept in mind that an information thus defined as an equivalence class is
quite an abstract entity, all the more it obviously contains infinitely many elements.
As a collective object, a symbolic information may by no means be reduced, or
likened, to a single sequence. Such a sequence may only act as its representative.
Defining as we did an information as an equivalence class is a necessary consequence
of the basic fact that an information must be physically inscribed. The multiplicity
of possible physical supports of a same information suffices to show that it must be
dealt with as an equivalence class. However, the necessity of encodings of different

3 In any possible meaning of the word: there should not be a causal relation between them and, if
they are random, they should be mutually independent in the probabilistic meaning of the word,
i.e., their joint probability should be the product of their individual probabilities.
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kinds which generally modify the length of a message is a still stronger incentive to
do so. It is thus practical necessities of handling information which demand such an
abstract definition, which is by no means gratuitous.

An information cannot be reduced to a number of any kind. It is an entity in itself,
which meets Barbieri’s concept of nominable entity (Barbieri 2007) (see Sect. 2.4.3
below). However, numbers can be associated with it. First of all and more important,
the information message, its representative, can be interpreted as a natural number
expressed in the binary numeration system and this may be useful, say, for clas-
sification purpose. Moreover, information theory enables associating a quantitative
measure with an information, and it turns out that this measure equals the length of
its information message. An information should by no means be confused with its
measure but a difficulty arises as regards the vocabulary because the word ‘infor-
mation’ is often used in papers dealing with information theory as an abridgement
for ‘information quantity’. Due to the dissociation of information and semantics, no
ambiguity results in the engineering literature. When trying as we do here to make
explicit the relationship of information with objects foreign to communication engi-
neering, however, the reader must be warned against this confusion. We try to avoid
it, sometime at the expense of rather lengthy periphrases.

Being defined as equivalence classes and not being numbers, informations cannot
be ordered although their quantitative measures can be. Each information is an ab-
stract object which has no other property than its uniqueness. No topology thus exists
among informations, and the information quantity which measures an information
is a mere attribute of it. As regards sequences, the Hamming metric to be defined in
Sect. 2.4.4 and used later defines a topology among the sequences which represent
informations, not among informations themselves.

2.3 Comments on the Definitions of Information

Shannon’s approach in (Shannon 1948) was purely empirical. He defined an infor-
mation quantity (see Sect. 4.2.1) but did not attempt to define information as an
entity. It is such a definition which is proposed in the previous section, and the reader
should be warned that this definition is not the only possible one. Indeed, defining
information has not been necessary for developing information theory and was not
needed for its engineering applications. We attempt here to define information in
order to help applying it to objects foreign to communication engineering, i.e., so as
to explicate its relationship with semantics (in a very broad sense).

We stated above that an information is physically inscribed. Let us emphasize how
this is different from Landauer’s statement, who wrote that ‘information is physical’
(Landauer 1996). He arrived at this conclusion by studying the physics of objects
which can bear a binary digit, i.e., of two-state machines. But why should the phys-
ical properties of the support of an information be likened to that of information
itself? Our statement that an information is physically inscribed leads to very differ-
ent conclusions. For us, physical objects bear an information to which we attribute



2.3 Comments on the Definitions of Information 17

properties which have no physical counterpart, the most specific one being the pos-
sibility of its copy on a new support while keeping it on the initial one. Another very
important property of information is that coding processes can transform a given
sequence into another strictly equivalent one but having a different length. These
two sequences obviously bear the same information, so an information cannot be
likened to a single sequence, and still less to the physical support of such a sequence.
The discrepancy between the status of information according to Landauer and to
us is actually of capital importance, and it is only our information concept which
will enable the conclusions of Chap. 10 regarding the relationship of the living and
inanimate worlds.

We define an information, abstractly, as an equivalence class with respect to the
possible supports which can bear symbols. Moreover, we consider as equivalent
symbolic sequences deriving from each other by coding of any kind, i.e., by abstract
transformations. We think that an information, instead of being itself a physical
entity, has merely a mandatory relationship with physics due to the necessary physical
inscription of a representative of it as an equivalence class. This will be examined
in Sect. 3.1 and 3.2. The main parameter expressing the dependency of information
on the physical world is the signal-to-noise ratio which determines according to Eq.
(3.10) a symbol error probability. Symbol errors do not directly affect an information
when it is represented by a word of a redundant code as efficient as to ensure its
conservation. Instead of dealing with information as a physical entity, we propose in
Sect. 6.3 to consider information as a fundamental entity from which we can derive
the physical entropy, and not the other way round. Doing so is the exact contrary
of what Schrödinger and Brillouin did (Sect. 6.3.4). Endowing information with the
status of a fundamental entity will be especially useful in biology, as we shall see
in the second part. It is the abstract definition of information that we propose, and
only it, which can account for the specific properties of life. Using this definition
entails that information appears as bridging the abstract and the concrete, as shown
in Sect. 6.4. Only this definition can account for the fact that the abstract content of a
symbolic sequence instructs the assembly and the maintenance of concrete objects as
does a genome. Far from expressing a purely philosophical disagreement, opposing
the statement ‘information is abstract’ to Landauer’s ‘information is physical’ is of
fundamental importance for our project of refounding biology on the science of
information.

The confusion of an information with its necessary support, which reifies in-
formation and hence denies its abstract facet, is not limited to Landauer’s work.
Most physicists implicitly accept it without a serious examination of the issue. I
am moreover afraid that the comparatively new discipline of quantum information
theory which intends to integrate quantum physics into information theory relies on
the same confusion (for instance, the acronym ‘qubit’ was coined for designating a
physical system, while ‘bit’ designates the quantitative unit of information in con-
ventional information theory). I am even reluctant as regards this very approach, and
it is why this book ignores quantum information theory. On the contrary, I wonder
if quantum physics could derive from information theory, although no attempt to
answer this question is made in the present book.
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2.4 An Information as a Nominable Entity

2.4.1 Naming and Counting

Any human society is made of individuals, each of them is unique. Similarly, we
are surrounded with objects which can be uniquely identified as possessing some
distinctive properties. We refer to objects or beings which can be unambiguously
identified as singular. Naming a singular object means associating with it a vocal or
written label which unambiguously designates, evokes or represents it. This label or
tag is a sequence of a finite number of signs which belong to some finite repertoire
given once and for all. Naming is an act of language, hence specific to the human
culture. The first naming systems were probably vocal, or some combination of vocal
signs and gestures. The signs of the repertoire should be mutually distinct but they are
otherwise arbitrary. We mostly restrict ourselves in the sequel to written texts, i.e., to
sequences of readable signs (often intended to represent vocal signs, or phonemes).
Then, the repertoire of signs is referred to as the alphabet and its elements as letters.

A wide variety of objects can be named. They may be living beings, or singular
objects of the physical world, or a set of physical objects which share some common
specific property within an equivalence class. Relations between objects or sets of
objects can be named, as well as these objects or sets. Sets of objects and relations
of any kind belong to the abstract world. As perceived by the human consciousness,
mental objects too can be named.

Among abstract objects, certain equivalence classes referred to as numbers soon
needed to be specifically represented by symbol sequences in order to incur a kind of
processing referred to as computation. Cardinal numbers just tell how many objects
of some kind are present in some given set and ordinal numbers tell the place where
given objects of some given ordered sequence are located. Letters, i.e., the same signs
as used for transcribing phoneme sequences, have sometimes been used for denoting
numbers when combined according to rules specific to this purpose, as for instance in
Roman numeration. Such representations of numbers were rather cumbersome and
their use for computing was quite complicated. Using symbols specifically intended
to represent numbers, the Arabic digits, much better fits the needs of computation.
Together with the modern numeration system, it enabled performing computation
by simple machines as that invented in 1652 by Blaise Pascal (then 19-year old)
as well as by nowadays computers. The representation of numbers by numeration
systems will be considered in more detail later (Sect. 2.4.2). The choice of the base
of a numeration system is just a matter of convention: it should be such that its
digits are conveniently distinguished. We inherited the base ten from the Greco-
Roman antiquity and, in accordance with this chosen base, the Arabic digits of our
numeration system are ten. The bases twenty and sixty have been used in certain
cultures, however, and we still use the base sixty for measuring certain time intervals
(hours, minutes, seconds), a legacy of the Babylonians. Humans easily distinguish
signs which belong to alphabets of this order of magnitude. Computers generally
use much smaller bases, especially the simplest possible one, 2, although calculation
circuits using the base 3 were implemented in early Sovietic computers.
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We have thus now in Western culture two main sets of written symbols: the letters
of, say, the Latin alphabet, which properly combined in sequences represent the
words of a language; and the set of signs, referred to as digits, which represent
numbers. There is however no intrinsic difference between letters as used for writing
texts in some language and digits used for denoting numbers and computing, since
both are elements of an arbitrary finite set of symbols. What differentiates written
representations of words and of numbers by sequences of signs is merely that they
are interpreted according to different rules. A written word and a written number
may thus be considered both as sequences of symbols of some alphabet; moreover, a
same alphabet can be used for both. This alphabet can be assumed to be the simplest
possible, i.e., binary, without loss of generality. Sequences of binary digits are used
in computers for representing both texts and numbers. We use from now on the
acronym ‘bit’ for binary digit.

As an example, the letters of the Latin alphabet are currently represented in
computers according to the American Standard Code for Information Interchange
(ASCII). Each letter is denoted by a 7-bit word according to a one-to-one correspon-
dence: a lower case letter is represented by ‘11’followed by the 5-bit sequence which
represents its rank in the alphabet according to the binary natural numeration. For
instance, 1100001 denotes ‘a’, 1100010 denotes ‘b’, etc. Capital letters use the prefix
‘10’ instead of ‘11’, so 1000001 denotes ‘A’, 1000010 denotes ‘B’, etc. Another rep-
resentation of the Latin letters uses the 8-bit words which result from appending to a
7-bit word as previously defined a single bit such that the total number of ‘1’s in the
word is even: then 11000011 denotes ‘a’, 10000010 denotes ‘A’, 11000101 denotes
‘b’, 11000110 denotes ‘c’, etc. Appending this eighth bit provides a rudimentary
means of error control: if an error affects a single bit in the 8-bit word, the number
of ‘1’s becomes odd so counting the ‘1’s in each word enables detecting that an error
has affected a single symbol, but not correcting it. More sophisticated means, using
longer words, can result in locating the error in the word and correcting it.

The previous remark was concerned with the problem of representing the letters
of an alphabet (hence words of a language combining several letters) by means
of digits. At variance with such words, which are semantically related with outer
objects, numbers have intrinsic properties and are endowed with structures of their
own. Their study constitutes an important part of the mathematical science. The
representation of numbers of any kind relies on the structure of the most basic ones,
referred to as the ‘natural integers’. Let us now have a look at it.

2.4.2 Defining and Representing Natural Integers

The mathematical definition of a natural integer is given in many textbooks. It is
most often defined as an element of a set IN which satisfies Peano’s axioms, namely:

1. IN contains a particular element named ‘one’ and denoted by 1.
2. For any element a of IN, there exists in IN an element b, referred to as the successor

of a, denoted by b = a′. Then a is said the predecessor of b.
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3. Any element of IN has a predecessor, except 1 which has none.
4. Two natural integers are equal if, and only if, their successors are equal.
5. IN obeys the axiom of recursivity, namely:

(a) If a property stated in terms of some integer n is true for the number 1;
(b) If it can be proved that, if this property is true for any integer m larger than

1, then it is also true for the successor m′ = m + 1 of m (an integer b is said
to be larger than an integer a, b > a, if b belongs to the successors of a;
the ‘successors’ of a should be understood here as a′, the successor of a′, the
successor of this successor, etc.);

(c) Then this property is true for any integer larger than or equal to 1.

Two operations, addition and multiplication, are defined on natural integers: addition
(denoted by +) defined as a+1 = a′ and (a+b)′ = a+b′, and multiplication (denoted
here by ∗) defined as a ∗ 1 = a and (a ∗ b) + a = a ∗ b′. These operations are
associative and commutative. Multiplication is distributive with respect to addition,
i.e., (a + b) ∗ c = a ∗ c + b ∗ c.

Less formally, Henri Poincaré assumes that the operation x + 1, which consists
of adding the number 1 to a given number x, is firstly defined and he notices that
this definition, whatever it is, does not play any role in the reasonings to follow
(Poincaré 1902). He defines the operation x+a, which consists of adding the number
a to a given number x, assuming that the operation x + (a − 1) has been defined.
Then, the operation x + a is recursively defined by the equality

x + a = [x + (a − 1)] + 1. (2.1)

In other words, we know what x + a means when we know what x + (a − 1) means,
and since we already know the meaning of x +1, it is possible to successively define
x + 2, x + 3, etc.

Being recursive, the definition using Eq. (2.1) actually contains infinitely many
distinct definitions, each of them becoming meaningful only when the meaning of
the preceding one is known. Having thus defined the addition of integers, Poincaré
recursively shows that it is associative, i.e., a + (b+c) = (a +b)+c for any integers
a, b and c, and commutative, i.e., a + b = b + a. He then defines the multiplication
of integers by the equalities

a ∗ 1 = a (2.2)

and

a ∗ b = [a ∗ (b − 1)] + a. (2.3)

Once a ∗ 1 has been defined by Eq. (2.2) and (2.3) enables successively defining
a ∗2, a ∗3, etc. Poincaré also recursively establishes the properties of multiplication,
showing it is distributive with respect to addition, i.e., (a + b) ∗ c = (a ∗ c) + (b ∗ c),
and commutative, i.e., a ∗ b = b ∗ a, for any integers a, b and c.

If we ignore some subtleties of Peano’s derivation which are motivated by the
exigence of mathematical rigour, we may simply summarize how the natural integers



2.4 An Information as a Nominable Entity 21

are introduced. First, take an element ‘one’, denoted by 1, which is left undefined
although we have a sensible intuition of its meaning. Then, define the operation ‘add
one’, denoted by ‘+ 1’. Once an integer n has been defined, n + 1 defines another
integer. Thus, starting from 1 + 1 = 2, the infinite series of integers results.

From a practical point of view, integers are useful for reckoning and labelling
objects. Assume that I have some collection of arbitrary material objects which I can
individually handle. I may take off one of them and say ‘one’, take off another object
and say ‘two’, and so on, uttering the name of the next natural integer every time I
take off an object. The last uttered number, say n, tells how many objects are present
in the collection. This number is referred to as ‘cardinal’ and expresses a quantity:
my collection contains n objects. I just used numbers for counting the objects. If
I am not interested in the peculiarities which possibly make these objects different
from each other, I am satisfied with this result. However, if each object is unique
and if I want to easily distinguish it from the other ones, I can use the number I utter
when I take it so as to indicate its place in the series of objects I took off, and it is
why it is then referred to as ‘ordinal’. If I took off the objects in an arbitrary order,
this process enables identifying each of them by tagging each object with its ordinal
number according to the chosen order. Numbers are now used for naming the objects
of my collection. Doing so provides a naming system which is both open since the
set of integers is unlimited and as universal as the use of numbers.

Using an integer as a label is possible thanks to a capital feature left somewhat
implicit as yet: its uniqueness. Any integer newly introduced in IN by the recursive
process described by Peano or Poincaré is different from those which were previously
introduced. Indeed, any integer can be shown to be equal to the product (i.e., the
result of multiplication) of a unique set of prime numbers, each of which is unique
itself.

How then is it possible to denote each of these potentially infinitely many ele-
ments? Creating a new symbol for each newly introduced number would be highly
impractical, so it is mandatory to use only a finite number of symbols. This problem
has cleverly been solved by numeration systems, which use a set (the alphabet) of a
finite number of signs (the digits), which can be combined so as to represent arbitrar-
ily large integers. It is first necessary to introduce a number foreign to IN, namely 0,
such that 0 + a = a and 0 ∗ a = 0 for any a in IN. Then, an integer n is represented
in a numeration system of base b ≥ 2 by the sequence d�−1 . . . d1d0, where the digits
d0, d1, . . ., d�−1 denote the � numbers n0, n1, . . ., n�−1 which all belong to the alpha-
bet {0, 1, . . ., b−1} and are such that n = n0 +b∗n1 + . . .+b�−1 ∗n�−1. The number
of digits � needed for representing the integer n is such that b�−1 ≤ n < b�. The
number n, hence the number �, may increase without limit. Then an arbitrarily large
integer can be represented using a finite set of symbols, combined into an orderly
sequence of unlimited length. Infinitely many integers can thus be represented by
this means.

A more convenient way for introducing the set of integers consists of starting
from the set of non-negative integers consisting of the previously defined one by
appending to it the element ‘zero’. (The usual notation of this new set is IN, and the
firstly introduced set is then denoted by IN∗.) This new set contains both the neutral
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element of addition, 0, (a + 0 = a for any a in IN) and that of multiplication, 1,
(a ∗ 1 = a). In IN, 0 is the predecessor of 1 but 0 itself has none. Then any element
of IN can be represented by a numeration system as described above.

Notice that such a numeration system can be extended to a fractional number
q = 1/a such that q ∗ a = 1, a being a natural integer as originally defined,
i.e., different from 0. The number q is also denoted by a−1. Then, the sequence
0 · d−1d−2 . . . is interpreted as meaning q = n−1 ∗ b−1 +n−2 ∗ b−2 + . . . , where the
numbers n−1, n−2, . . ., which all belong to the set {0, 1, . . ., b − 1}, are denoted by
the digits d−1, d−2, . . . , respectively. The representation of certain factional numbers
can then involve an infinite number of digits. For instance, in decimal numeration,
0 ·111 . . . = ∑∞

i=1 10−i represents 1/9. In such a case, a finite number is represented
by the sum of infinitely many finite terms4: each of them is as small relatively to the
previous one as to keep the sum finite.

More about extensions of the number concept can be found in Appendix B,
Sect. B.2.

2.4.3 Concept of Nominable Entity

We have seen in Sects. 2.4.1 and 2.4.2 two possible ways of using sequences, for
naming objects hence for a semantic purpose, or for counting objects as needed for
computing. Sequences which represent integers in some numeration system can even
be used for labelling objects, which is another way for naming them. But sequences
exist by themselves, regardless of how they are interpreted. Indeed, every sequence
is unique. Substituting one of its symbols for another one suffices to transform it
into another sequence which is unique, too. Barbieri referred to objects or classes of
objects which can be unambiguously named as nominable entities (Barbieri 2007).
Any entity which cannot suffer any change without losing its very identity (or ceasing
to be itself) is a nominable entity. The sequences intended to name them must be
unique, too, so as to match the singularity of the named objects. Sequences are then
pure, prototypic nominable entities, independently of any interpretation. They have
no other property than their uniqueness. We already noticed that any integer can be
uniquely expressed as a product of primes and is thus unique. A numeration system
associates with it a unique sequence of digits.

Being the science of sequences, information theory may be thought of as the
science of nominable entities. More precisely, we defined above an information as
an equivalence class of sequences, and it is such a class which possesses the property
of uniqueness. We may thus interpret an information, defined as an equivalence class
of sequences, as a nominable entity in Barbieri’s meaning. Indeed, the concept of
nominable entity matches the attempted definition of an information outlined above
(Sects. 2.1 and 2.2), since its representative, the information message, is unique.
Information theorists, and first of all Shannon himself, dealt with information in

4 The progress of mathematics has refuted Zeno’s paradoxes like that of Achilles and the tortoise.
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general and, thanks to the postulated divide between information and semantics, did
not need to precisely define an information. On the contrary, outlining the relationship
of information with semantics is necessary for applying information theory outside
communication engineering. It is why we try to do so in Sect. 4.3.5 below.

The length of possible symbolic sequences is not limited. Their number is thus
infinite, and so the number of possible nominable entities is unlimited. Moreover,
the number of sequences is a fast increasing function of their length k, namely the
exponential αk , where α ≥ 2 is the alphabet size.

Before proceeding further, let us give a few examples borrowed from the daily ex-
perience. A sequence which uniquely labels a nominable entity may be, for instance,
an address or an identification number. A telephone number is an example of such a
sequence. I want to call Mr. Dupont whose telephone number is 0123456789, but if I
erroneously dial 0123456788, I fail to be connected with him. The number I dialled
differs from that of Mr. Dupont only in its less significant digit if I interpret his tele-
phone number according to the usual numeration system, but the same negative issue
occurs if I dial a very different number, e.g., 9012345678. It would make actually no
sense to interpret a telephone number as an ordinary integer. In mathematical words,
nominable entities cannot be ordered (no one is larger or smaller than another one)
and they ignore any topology: a nominable entity has no neighbours. Performing op-
erations of ordinary arithmetic on such ‘numbers’ would obviously be meaningless.
Having discovered the role of nominable entities in the life processes, Barbieri is right
when writing that ‘they are a new kind of natural entities’ (Barbieri 2007, p. 200).

However, just like a telephone number, any address or identification label can be
written as a natural integer by means of a numeration system. Natural integers are
endowed with a topology when they are intended to express the result of counting
and then their status of nominable entity (of being uniquely expressed as a product
of primes) is no longer relevant. Then, instead of a nominable entity, they represent a
quantity. For instance if I am a fireman who intends to count the attendants in a theater
in order to estimate how long it would take to evacuate it in case of emergency, 100
and 101 people make little difference, at variance with 100 and 999 people. Ordering
these numbers and stating that they are more or less close to each other, i.e., endowing
them with a topology, becomes meaningful. However, if I use numbers as labels for
identifying the attendants, like the numbers worn by the competitors of a race, the
one who bears number 100 is just as different from the bearer of 101 as he/she is
from the bearer of 999. In other words, no degrees of difference are meaningful in
such a case: identities ignore any topology. Then natural numbers used as labels act
as nominable entities and are not endowed with any topology nor can be ordered:
although the natural number 999 is larger than the natural number 101, such an
inequality is meaningless when these numbers are used in order to label individuals,
hence represent nominable entities.

As still another example of a nominable entity, a person is identified (in France)
by a 13-digit number the successive decimal digits of which indicate his/her sex (1
digit), then the year, month and place of birth (2, 2, and 5 digits, respectively), plus
the rank of the line in the register where the birth has been recorded (3 digits). As
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uniquely identifying someone, this sequence5 is a nominable entity, too. But it is
obtained by the concatenation of sequences of 1, 2, 2, 5, and 3 digits having the
meanings indicated above, each of which being itself a nominable entity. In such
a case, sequences are successively appended to each other so as to constitute some
single string of symbols. It must be possible to separate each peculiar sequence
from the other ones as an intrinsic nominable entity. This condition is fulfilled in
the above example because the order of the component sequences as well as their
lengths are known. In general, means should enable determining the precise places
where a component sequence begins and ends. Sequences which can be separated
from each other inside a symbol string which includes them are said to be decipher-
able, and how this can be achieved is dealt with in Sect. 3.2. The lengths of the
concatenated sequences necessarily obey the Kraft inequality (4.32). Concatenating
short sequences is a means for creating longer ones which is often useful. If the
short concatenated sequences are decipherable, the longer sequence which results
from their concatenation specifies an object as simultaneously belonging to different
classes each identified by one of the shorter component sequences. We shall refer to
the nominable entities corresponding to the component sequences as nested. Then
the concatenation reflects a hierarchical taxonomy.

A musical theme is another example of a nominable entity, all the more interesting
since no semantic content is generally associated with it (if we except Wagner’s
Leitmotive).

Nominable entities are rather foreign to the usual practice of science, at least
if physics is taken as reference. A physical measurement, for instance, consists of
assessing some physical quantity by means of an experimental apparatus. Except if
it consists of counting objects and thus results in an integer, a measurement provides
a number of a quite different kind, said ‘real’ in the mathematical meaning of the
word, which however may be somewhat misleading (see Sect. B.2 in Appendix B
below). A margin of uncertainty about the measured quantity always remains, due to
the intrinsic limitations of the measurement apparatus and possibly to the lack of a
sharp delimitation of the measured quantity itself. The result of a measurement should
always be considered together with its uncertainty margin, so its actual mathematical
status is that of a ‘real’ random variable. A single measurement result is merely a
realization of this random variable, of a priori unknown mean and variance although
they can often be estimated. Repeating many times the experiment, provided it
is possible, enables as a consequence of the law of large numbers to make their
estimation more an more accurate, and the mean of the random variable is referred
to as the measurement result.

The relative precision of a measure, i.e., the ratio of the uncertainty margin to
the measured quantity, widely depends on the measurement apparatus, especially on
the quality of the tools available to build it and on the skillfulness of the craftsmen
who did so. Nowadays, the apparatuses still need to be precisely manufactured but
measurements furthermore rely on sophisticated data processings based on informa-
tion theory and computer science. These processings are intended to diminish the

5 It is redundant: fortunately, less than 1013 people live in France.
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uncertainty margin, but risk of making the results dependent on more or less im-
plicit underlying hypotheses. In any case, a nominable entity cannot result from the
measurement of a physical quantity, regardless of its precision, as being intrinsically
different from an integer (or ‘natural number’) as defined above.

The word ‘real’ was initially intended to be opposed to ‘imaginary’, both qual-
ifying numbers. Imaginary numbers, now renamed ‘complex numbers’, revealed
useful in the resolution of equations but are foreign to any counting process. How-
ever, it is likely that the slowly elaborated mathematical concept of real number
has been developed in order to match a property that classical physics associates
with the entities of the real world: continuity. It turns out that the mathematicians
used to this end tools entirely foreign to the physical world like limits of infinite
series. They did not take into account the necessarily limited precision of any phys-
ical measurement. The very progresses of physics have moreover shown that an
apparent continuity often masks, by an effect of large numbers, the existence of
very numerous discrete objects or events. The engineers use to express the divide
between discrete objects and continuous (or seemingly continuous) ones the words
‘digital’ and ‘analog’. This latter word is not assumed to refer to all the properties
that mathematicians attribute to ‘real’ numbers since they are actually random vari-
ables, however sharply defined they may seem. It should just be intended as the
contrary of ‘digital’. The relevance of ‘real’ numbers in physics has been criticized
by many mathematicians, e.g., Poincaré and, recently, (Chaitin 2005, p. 94) (also
see Sect. B.2 below). The concept of real number has been fully elaborated only at
the end of the XIX-th century. A few decades later, physicists dismissed continuity
from the way they describe the world. They had to invent other mathematical tools
like operators, which act through a discrete set of eigenvalues, in order to prop-
erly account for the discontinuous new vision of the world that quantum physics
proposed.

It should be noticed that, according to our view of an information being necessarily
inscribed onto a physical support, a real number in the mathematical meaning cannot
represent an information since its symbolic representation would imply an infinite
number of digits, hence need an infinitely large support. Even a single quantity
measured by a real number in this meaning could not be stored in the physical world
(we use this argument for exorcizing Laplace’s demon in Sect. 6.3.3 below).

Nominable entities are nevertheless needed in physical sciences in order to des-
ignate singular objects, or sets of objects which share some singular property. For
instance, astronomy, chemistry and the physics of particles need naming labels, just
like biological taxonomy. The utility of these labels is restricted to the scientific lit-
erature, but they are not related to the phenomena themselves. What makes biology
unique, radically different from any other science, is that certain nominable entities
borne by genomes actually participate in the operation of life. As emphasized by
Barbieri, far from being confined in the human culture, they are first rank actors of
the living processes. Likening informations to nominable entities then legitimates
considering as highly specific the relation of biology to information theory, a major
thesis defended in this book (see Chap. 9).
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2.4.4 Representatives of Nominable Entities Need to be Protected

Nominable entities are obviously of fundamental importance in culture as well as
in any form of life. When the representative of an information, i.e., an information
message, is a recorded sequence, the perturbing influences incurred by the recording
medium threaten its integrity, hence the very existence of the information.

In the cultural field, we do not really perceive that nominable entities are so fragile,
in part because the artificial memory devices we use to record sequences belong to
the macroscopic world; they are thus made of a huge number of molecules so the
states to be distinguished for identifying an alphabet symbol always involve myriads
of atoms. When the sequences are borne by an acoustic or electromagnetic wave, its
power widely exceeds that of the ambient noise. It is far from being so for natural
memory devices or signals at the cellular or molecular scale. Especially, DNA and
RNA sequences belong to the quantum world as molecular memories.

However, the physical robustness of our memory devices probably does not suffice
to secure the needed integrity of cultural nominable entities. We do not realize that,
owing to its enormous redundancy, our linguistic system acts as an error-correcting
code at multiple levels (see Sect. 8.1.4). This error-correcting ability results in keep-
ing the integrity of informations, as defined in Sect. 2.2 and now likened to nominable
entities. We claim that similar error-correcting means must exist at the most basic
levels of life. These means need to be even more powerful because, at the cellular
and molecular levels, the risk of symbol errors is much larger than at the macro-
scopic scale: the smaller the spatio-temporal scale of the medium, the larger the risk.
Moreover, genomes are conserved during the immense time intervals of geology.

The vulnerability of sequences to perturbations of any kind and the necessity
of conserving nominable entities must be conciliated. The very existence of the
nominable entities lies in their integrity, and the fragility of the recording media
which are needed for their conservation demands that the sequences which bear
them are highly protected (see Sect. 3.4). When sequences are communicated or
recorded, each of their symbols incurs the risk of being replaced by another one
with some non-zero probability, resulting in substituting another one for it. This
event is referred to as a symbol error (for binary symbols, the error probability can
be assumed to be less6 than 1/2; a proper labelling of the symbols has always this
result). In communication theory parlance, the channel is ‘noisy’. If we consider
the set of n-symbol sequences, the Hamming distance d between two of them is
just the number of symbols which need to be changed in order to transform one of
them into the other one. The larger d , the less likely a pattern of symbol errors can
perform this transformation. Keeping the integrity of sequences can thus exclusively
be achieved by using sequences which belong to a set where a sufficiently large
minimum Hamming distance d exists between its elements. The original sequence
can always be recovered if less than d/2 symbol errors occurred, since then the

6 An error probability of 1/2 prevents any communication by means of the binary alphabet; see
Sect. 5.2.2.
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received word is closer to the actually sent codeword than to any other. This is
the principle of error-correcting codes. The integrity of a sequence as a nominable
entity can thus be ensured with high probability provided this sequence belongs
to an error-correcting code, with a probability of failure the smaller, the larger the
minimum Hamming distance d of this code. Error-correcting codes, possibly in a
meaning extended with respect to that of engineering, appear indeed as the only
means for conserving nominable entities despite the fragility of the media. If some
given medium on which a sequence is recorded is placed in given physical conditions,
the probability of symbol error within some time interval does not vary with time. This
error probability may be assumed constant for the need of analysis. The symbol errors
are cumulative, so the error-correcting ability of any code, however large its minimum
distance d, is exceeded after some time interval. The conservation of sequences thus
needs the periodic or almost periodic regeneration of their recorded representatives,
encoded by means of an error-correcting code, after a small enough delay which
depends on both the frequency of errors and the minimum distance of the code.

The absolute necessity of protecting nominable entities is a major thesis of this
book. Keeping the integrity of nominable entities may be thought of as a principle
of extremely general reach and significance. Information theory states this neces-
sity and, inspired by it, communication engineering developped the means of its
implementation. As specifying living things, genomes are nominable entities which
play a prominent role in the life processes. There is thus a necessarily close link
between information theory and biology, similar to the link between information
theory and communication engineering. The concepts of information theory must
therefore have a prominent place in biology. They may be thought of as the bases of
a future theoretical biology.

2.5 A Short History of Communication Engineering

Before we begin expounding information theory, we briefly discuss the historical
development of communication engineering in order to help understanding its close
relationship with it and why the application of information theory to other sciences
remained as yet so limited.

Two events of capital importance for the future of communication engineering oc-
curred almost simultaneously at the same place, the Bell Telephone Laboratories: in
1947, John Bardeen, William Shockley and Walter Brattain invented the transistor;
and, in 1948, Claude Shannon published ‘A mathematical theory of communication’.
The technological developments based on the first event, i.e., the semi-conductor
technology, provided means for implementing solutions to communication prob-
lems having their origin in the second one. In his seminal paper (Shannon 1948),
which is more precisely a theory of communication means, Shannon introduced a
quantitatively measurable entity referred to as information and developed its mathe-
matical theory. Neither the word nor the concept of information were new, of course,
but considering information as a measurable scientific entity was so.



28 2 What is Information?

Shannon’s paper (Shannon 1948) gave rise to a new science. This paper consti-
tutes a complete treatise of the nascient science, an event almost unique in history.
It has actually been the starting point of a vast and fruitful stream of researches.
Some further theoretical developments were needed to confirm Shannon’s state-
ments, especially for more rigourously proving some of his theorems, but little was
left to Shannon’s successors for deepening and expanding the core of information
theory. Shannon introduced the main quantities needed for measuring information.
He showed that communication is possible only within precise limits which he ex-
pressed in terms of the quantities thus introduced (see Appendix A). How to reach
these limits, namely the needed processings as well as the means for their physical
implementation, remained however entirely to be invented when Shannon’s paper
was published. Moreover, the promises of the theory exceeded by far the perfor-
mance of devices which could be implemented when they were formulated, and
even what was believed to be possible. The most paradoxical result in this respect
is the theoretically proven possibility of reliable communication over an unreliable
channel. This unexpected and very promising result has been a strong incentive to
researchers, putting out a difficult challenge. The parallel progress of researches in
error-correcting codes and in semi-conductor technology did not result in practically
implemented means for closely approaching the theoretical limit that information
theory sets for error-free communication, namely the channel capacity, before the
invention of turbocodes, in 1993.

On the theoretical side, one of the most important events after the publication of
(Shannon 1948) has been the introduction of the algorithmic information theory, by
Solomonoff (Gàcs and Vitànyi 2011), Kolmogorov (Kolmogorov 1965, 1968) and
Chaitin (Chaitin 2005) around 1965, which, at variance with Shannon’s, does not
rely on probabilities. It is inspired by computer science instead of communication
engineering and provides a new insight about information (see Sect. 6.1).

If Shannon left comparatively little to be done as regards theory, his papers
prompted countless and entirely unexpected applications in the fields of source- and
channel coding. Source coding consists of replacing an initial message by a shorter
but fully equivalent one. Channel coding aims at protecting a message against trans-
mission errors, which demands introducing redundancy, i.e., replacing the original
message by a longer but equivalent one. Then within certain limits symbol errors in
the encoded message do not prevent recovering the original one.

As regards source coding, information theory established that the message deliv-
ered by a source can be encoded so as to reduce its length, but only up to a lower
limit which depends on a quantity specific to the source referred to as its entropy.
The Huffman algorithm asymptotically achieved this limit as early as 1952, for sim-
ple source models (see Sect. 4.3.4). Other efficient source coding algorithms were
found later (arithmetic coding, Lempel-Ziv algorithm, . . .). In sharp contrast, while
information theory also stated the limit beyond which channel coding can no longer
achieve errorless communication, namely, the channel capacity, no practical means
to closely approach it were found during decades although it has been perceived as
a challenge by thousands of mathematicians and engineers and thus prompted in-
tense researches. This goal was not achieved earlier than 1993 when the invention of
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turbocodes by Berrou and Glavieux (Berrou et al. 1993; Berrou and Glavieux 1996;
Guizzo 2004) provided means to communicate at information rates close to the chan-
nel capacity, hence experimentally proving that the limit set by Shannon’s channel
coding theorem is practically attainable. Analyzing how turbocodes achieve this
result further revealed that a much older code family, Gallager’s low-density parity-
check codes (Gallager 1962, 1963) could also closely approach the channel capacity.
When they were invented, the performance of these codes could not be assessed for
lack of adequate computation or simulation means and, moreover, their decoding
was too complex for being implemented by the technological means then available.
Besides providing useful results, the availability of codes practically reaching the
channel capacity can be thought of as a remarkable experimental confirmation of
the theory itself. Codes able to reach the channel capacity have even been recently
invented (Arikan 2009). Far from the purely mathematical discipline it was at its
beginning when no means were available for its implementation, information theory
can indeed no longer be separated from communication technology. The innumer-
able engineering achievements it enabled may be thought of as experimental proofs
of it. Information theory now acquired a full operational validation.

It turns out indeed that the information-theoretic solutions to communication
problems are the more efficient, the more complex. The progress of semi-conductor
technology resulted in devices becoming at the same time more and more complex,
more and more tiny and less and less expensive. By now, more than 60 years after the
transistor was invented, a silicon chip of a few square centimetres can bear about a
billion transistors. The tremendous evolution of semi-conductor technology towards
increasing complexity and small size perfectly fitted the needs of communication
engineering for implementing solutions inspired by information theory. It especially
led to the development of very sophisticated error-correcting codes which reliable
and inexpensive devices can by now implement. They actually invaded our daily
life: computer memories, mobile phones, CD, DVD, digital television . . . However,
they remain invisible and very few people are aware of the high complexity which
subtends electronic objects of daily use. With their trend towards complexity and
small size, electronic devices tend to mimic biological devices. Just like we are
unaware of the physiological processes which keep us alive, we are less and less
conscious of the complexity of the electronic objects which we routinely use. Most
of us completely ignore how they work and, moreover, explaining their operation
often needs advanced mathematical concepts borrowed from information theory.

Although in its early years many researchers attempted to apply information the-
ory to a number of scientific and even philosophical problems, in fact to almost
everything, this has not been a fruitful stream of research, but rather a fad which left
no significant results (see Sect. 3.2.1 below for an example). Shannon mocked this
trend in an editorial written in 1956 where he very lucidly wrote (Shannon 1956):

A thorough understanding of the mathematical foundation [of information theory] and its
communication applications is surely a prerequisite to other applications. I personally believe
that many of the concepts of information theory will prove useful in these other fields—and,
indeed, some results are already quite promising—but the establishing of such applications
is not the trivial matter of translating words to a new domain, but rather the slow tedious
process of hypothesis and experimental verification.
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The failure of the early attempts shed doubts on the possibility of applying infor-
mation theory elsewhere than its native field of engineering, resulting in lasting
prejudices. More than half a century later, however, we may think that a much im-
proved understanding of the foundation of information theory and its communication
applications has been acquired through both theory and experience, so applying it
outside communication engineering can reasonably be contemplated. We dare doing
so in this book. The examples dealt with in what follows are hopefully not so trivial
and not too tedious.

Besides the fad mocked by Shannon, we must mention that some resarchers,
mostly coming from physics, were deeply interested in information theory and in
its possible applications to natural sciences. Léon Brillouin, to be quoted in several
places below, early investigated the relationship of information with thermodynamics
(Brillouin 1956), but also asked deep questions about life and its possible connection
with information (Brillouin 1959). We should also mention Henry Quastler, and Hu-
bert P. Yockey who tirelessly tried to convince biologists of the interest and potential
usefulness of information theory in their discipline (Yockey 1974, 1992, 2005).

2.6 Communication Over Space or Over Time

Information theory originated in a reflection about communication techniques, in-
tended to deliver to a recipient a message emitted by a source. The source and the
recipient are distinct, hence distant. Communicating the message is possible through
the agency of propagation phenomena which involve a wave generated at the source
location which propagates up to the recipient: a periodic time variation of some field
occurring at the source entails that, at spatially distant locations, the same variation
is reproduced (up to a propagation delay and an attenuation of its amplitude). Then
some intentional modification of a parameter of the wave, intended to represent the
message, a process referred to as modulation, is reproduced at the recipient location
where it can be received. Emphasis will be laid on the case where this message is
symbolic as defined above, i.e., consists of a sequence of elements from a finite al-
phabet. The wave is said the ‘carrier’ of the sequence of symbols, or message, which
modulates it.

Although it was not initially intended to this case, communication theory is also
relevant when the source and the recipient are separated by a time interval instead
of a spatial distance. Then the message is recorded on some enduring medium and
read later. A major phenomenon of life, heredity, may be thought of as relevant to
this case. The recording techniques are different from those of telecommunication,
but the basic formalism is the same in both cases so information theory applies
to both. We consider communication over space in order to introduce information
theory since this case has been the most studied and some concepts are easier to
explain in this framework, but many problems relevant to biology, heredity being
the first and most important one, concern communication over time. We indicate
when needed how the concepts and vocabulary which pertain to communication
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over space can be transposed so as to fit communication over time. We shall often
refer to communication over time as conservation, and the conservation of an object
is a necessary condition for its present existence.

These two modes of communication are, moreover, not entirely foreign to each
other. On the one hand, the propagation of the wave which carries a message lasts
some finite time and thus actually performs communication over both space and
time, even when its only purpose is communication over space and if the delay
unavoidably incurred may be detrimental. On the other hand, writing a message on
some medium which is later transported up to its destination is an ancestral means for
ensuring human communication at a distance. As a biological example of this kind
of communication, sexual reproduction involves the transportation of the genetic
messages borne by male and female gametes up to the point they meet.
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Chapter 3
Basic Principles of Communication Engineering

Abstract Chapter 3 briefly examines the technical means used for representing the
symbols of an alphabet by physical signals, i.e., the basis of any communication.
The reception of a binary signal in the presence of noise is given special emphasis.
It consists of comparing hypotheses, hence it is wrong with some finite probability.
As relevant to probability theory, literal communication is thus by no means a trivial
matter. Sequences of symbols are represented by sequences of such signals, and
it is examined how constraints linking the symbols, thus introducing redundancy,
can endow a sequence with resilience to the errors which may individually affect
its symbols. The significant parameter in this respect is the ratio between the signal
and noise powers, or signal-to-noise ratio, which relates the symbol error rate of a
sequence with the power used for communicating in the presence of noise.

Communication engineering is presumably foreign to many readers. It is why we
briefly expound its fundamentals in the present chapter before dealing with the sci-
ence which is founded on it. Why probabilities are so important in information theory
will become clear. We also lay emphasis on the role of redundancy which, besides its
engineering usefulness, is the key for understanding the very concept of information.

3.1 Physical Inscription of a Single Symbol

We consider here communication over time. A first and mandatory step of a literal
communication consists of representing the symbols of the alphabet as distinct sig-
nals, a signal being defined as the variation in time of some physical quantity within a
finite interval. The shape of its variation is particular to each signal, and a one-to-one
correspondence of signals with the alphabet symbols is established. As functions of
time, the signals are endowed with properties required for their propagation. Their
association with the symbols is just a matter of convention. As a very simple intro-
ductory example, we first assume that we intend to represent a single symbol of the
binary alphabet, referred to as bit, by the variation in time of some physical quantity,
say the voltage V at a point of an electrical circuit, during a time interval T to be
referred to as ‘bit duration’. The simplest means for doing so consists of representing
the digits 0 and 1 of this alphabet by constant values of the voltage during the time
interval T . We may for instance choose V volts for representing one of the bits and
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−V volts for representing the other one. If the range of possible voltages is limited
to {−V , +V }, this choice results in the largest possible difference between the two
cases, hence provides the best way for discriminating between them in the presence
of outer perturbations. Moreover, since what differentiates the values 0 and 1 of the
bit is a sign, the signal still represents the same bit if it is multiplied by some positive
constant, a property which can be referred to as scale invariance1. This property
is useful since signals are attenuated when they are propagated and are amplified
in receivers, hence it is an advantage that they are insensitive to multiplication by
a positive constant. The association of the signs + and − with the symbols of the
binary alphabet is just a matter of convention. We agree, for instance, that a voltage
of V volts within the time interval T represents the bit 0 while −V volts represents
1: this choice results in (−1)b being the sign which affects V , where b denotes the
bit 0 or 1.

Another equally efficient means of representing binary digits would consist of
associating the signal made of +V volts during the first half of the time interval T

and −V during its second half with bit 0, and the opposite signal (−V volts during
the first half of the time interval T and +V during its second half) with bit 1. Other
signal shapes obtained by cutting the given time interval into segments during which
the voltage remains constant, equal to +V or −V , an such that the signs associated
with bit 0 and those associated with bit 1 are opposite would obviously be equivalent.
Signals used for representing a bit which are opposite to each other are often referred
to as antipodal.

We see here that we may represent a bit by a sign, associated with it according
to some arbitrary convention, which affects some fixed time function. This function
itself describes the variation of the chosen physical quantity, and can in turn be
thought of as the product of a physical quantity, here a voltage V , by a function
devoid of physical dimension which represents the shape of the signal. The value of
V determines the energy which is common to the signals associated with the bits,
namely, E = T V 2 (up to a constant factor depending on the chosen units). The
two independent factors of signal shape and energy are conveniently separated if the
signal shape is represented by a signal s(t) of unit norm. The norm ‖s‖ of a signal
s(t) is defined2 as the positive square root of

‖s‖2 �=
∫

s2(t)dt ,

where the integration interval is the interval on which s(t) is defined, namely, the bit
duration T in our examples. A normalized signal s(t) is thus such that

∫

s2(t)dt = 1. (3.1)

1 When the considered physical quantity is intrinsically positive, or when it is impossible to measure
its sign, it is necessary to choose non-negative values, say {0, +V }. The property of scale invariance
is then lost.
2 Here and below,

�= means ‘equals by definition’.
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u ( t )

0
timeT

a

v ( t )

0
timeTT/2

b

1 √T/

1 √T/

1 √T/

Fig. 3.1 The two orthonormal functions u(t) and v(t)

Let u(t) denote the normalized signal of the first example above (a constant during
the given time interval), namely:

u(t) = 1/
√

T , t ∈ (0, T ) (3.2)

= 0, elsewhere

and v(t) that of the second one:

v(t) = 1/
√

T , t ∈ (0, T/2), (3.3)

= −1/
√

T , t ∈ (T/2, T ),

= 0, elsewhere.

The normalized signals u(t) and v(t) are depicted in Fig. 3.1.
Given two functions f (t) and g(t) over the same time interval, we define their

‘scalar’ (or ‘correlation’) product, denoted by (f · g), as

(f · g)
�=

∫

f (t)g(t)dt , (3.4)

the integration being effected on the whole interval where the functions f (t) and g(t)
are defined. The squared norm of a signal as defined above is thus its scalar product
by itself.

The two signal shapes u(t) and v(t) defined above have been chosen mutually
‘orthogonal’, meaning that

(u · v) =
∫

u(t)v(t)dt = 0. (3.5)

Being both normalized and orthogonal, such functions are often referred to as
orthonormal.

The signals contemplated up to now are generally not directly transmitted. They
are most often used in order to modulate some ‘carrier’ wave which possesses the
propagation properties necessary for transporting a sequence of symbols up to the
intended destination (see Sect. 3.2.2).
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Let some signal used for representing a bit have s(t) as normalized shape. We
assume that the variation of a voltage according to this signal is reproduced at a
distant place, the receiving end, thanks to a propagation phenomenon. The repro-
duced variation is referred to as the received signal, and we provisionally assume
that it has the same shape as the transmitted one except that the received voltage is
diminished by some attenuation factor. It turns out moreover that outer perturbations
collectively referred to as noise are unavoidably added to the transmitted signal.
Noise can only be dealt with as a random process. The received signal is thus

r(t) = ±√
Es(t) + n(t), (3.6)

where the sign ± represents the transmitted bit, the normalized signal s(t) indicates
the shape of the time function which is used, E is the received signal energy and n(t)
denotes a realization of the noise. The received signal is most often amplified in the
receiver, but the signal and the noise are amplified by the same factor which at best,
if the amplifier noise is ignorable, leaves unchanged the signal-to-noise ratio, the
fundamental parameter of a communication to be more formally defined in Sect. 3.3.

3.2 Physical Inscription of a Sequence

3.2.1 Symbols and Sequences

Before we contemplate the physical inscription of a sequence of symbols, we must
warn the reader that there is no basic difference between symbols and finite sequences,
except that lengthening a sequence can always be contemplated, while a symbol is
assumed to belong to an alphabet of given finite size. An n-symbol sequence from
an alphabet A of size α may as well be considered as a sequence of n/k groups of k

successive symbols ofA (assuming that k dividesn).A group (sequence) of k symbols
from A can be interpreted as a single symbol from the alphabet Ak of size αk . For
instance, the 15-bit sequence 100001101100010 is equivalent to the 5-digit sequence
41542, since it can be written 100-001-101-100-010, where each of the 3-bit groups
can be interpreted as representing in natural numeration a symbol of the octal alphabet
(of size 23 = 8). The sequence in the alphabet Ak is referred to as the k-th order
extension of the original sequence. It is merely an alternative way of representing
this sequence. The statistical properties of a sequence result from the probability
of its symbols taken separately but also from their mutual dependency. Separately
considering the symbol probabilities amounts to ignore this mutual dependency.
Considering longer and longer extensions of the original sequences results on the
contrary in taking more and more into account the mutual dependency of the symbols
of the original sequence, which is then ‘integrated’ into the probabilities of the
extended alphabet symbols. Considering longer extensions is actually a standard
means in source coding algorithms for better exploiting the mutual dependency of
the symbols in the original sequence (see Sect. 4.2.5).
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Fig. 3.2 Example of a binary representation of the message 01101

In some early attempts to apply information theory to biology, e.g., by Lila Gatlin,
the symbols of the alphabets found in nature, like the 4 nucleic bases of DNA, were
dealt with separately (Gatlin 1972). The higher order extensions of the molecular
sequences were not considered, resulting in the mutual dependency of their symbols
being ignored. Applying information theory in such a truncated way provided rather
trivial results of little benefit to biology. It turns out that the mutual dependency of
symbols in a sequence, which was ignored, is extremely important: for instance,
error-correcting codes owe their performance to it (see Sect. 5.5). Since the intended
readers were not as experts in information theory as to have a critical look at the
method, they concluded that ‘information theory is of no benefits to biology’. The
failure of such early attempts of applying information theory to biology hampered it
for decades since this kind of prejudice is long-lived (all the more it prompts laziness).

3.2.2 Representing a Sequence of Symbols by a Sequence
of Signals

We saw above how to represent a single bit. We intend however to communicate a
sequence. An obvious means for obtaining this result consists of using a sequence of
signals with normalized shapes like u(t) or v(t) above in successive disconnected time
intervals. For instance, if u(t) as in Eq. (3.2) is used as normalized signal, a voltage
of V volts represents 0 while −V volts represents 1. Then a message is represented
by a succession of such signals assuming the constant values ±V during each time
interval of duration T . As an example, Fig. 3.2 represents the signal associated with
the message 01101.

Then, only the noise present in the particular time interval where some signal is
defined will perturb receiving the corresponding bit. Disconnected time slots as in
Fig. 3.2 are not necessary for properly representing a sequence. It suffices, if s(t)
is the common normalized shape of the bits, that the functions s(t) and s(t ± kT )
are orthogonal for any integer k. Then, as will be stated in Sect. 3.3, the noise
independently affects the signals which represent the bits.

There is however a less obvious way of representing more than a bit by a signal.
It consists of using a signal space defined over a given time interval by mutually
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orthonormal basis functions, to be now defined. The concept of signal space, the
representation of noise and the description of its effects on symbolic communication
were introduced and studied by Shannon (Shannon 1949). We now define a signal
space, and we will discuss its usefulness for the reception of symbols in the presence
of noise in Sect. 3.3 below.

All signals of same shape, hence having the same normalized function s(t), may
be interpreted as belonging to a one-dimensional space having s(t) as a basis. An
axis being associated with s(t), any element of this set, say f (t), is represented as a
point on this axis. The abscissa of this point is the correlation product (s · f ). Two
normalized functions, say u(t) and v(t), similarly define each a one-dimensional
space. If moreover u(t) and v(t) are orthogonal, they define together the orthonormal
basis of a 2-dimensional space, or plane. Then any function f (t) = λu(t) + μv(t),
i.e., expressed as a linear combination of u(t) and v(t), has λ and μ as coordinates,
with λ = (f · u) and μ = (f · v) (where λ and μ are real numbers). A geometrical
interpretation results if we think of f (t) as a point of the plane, and λ and μ as its
projections on the axes, or coordinates. The projection operator onto an axis is then
the correlation product off (t) by the basis function which defines this axis. Of course,
there is no reason to limit the number of dimensions to 2: n orthonormal functions
(i.e., mutually orthogonal functions of unit norm) similarly define an n-dimensional
signal space.

The 2-dimensional case is of particular importance because such a signal space can
be associated with a sinusoidal wave. Such a wave acts as a ‘carrier’of information in
modulation systems when it is multiplied by signals representing sequences like that
of Fig. 3.2. Indeed, for an integration interval of an integer number of half periods
(or, approximately, for any integration interval much longer than the period), the
functions sin (2πf t) and cos (2πf t) obey Eq. (3.5) and are thus orthogonal. After
being normalized, they constitute the ‘natural’ orthonormal basis of a 2-dimensional
signal space for describing modulation systems.

The signals represented by points of a signal space having ±V as coordinates
specify as many bits as dimensions. For instance, two bits are simultaneously repre-
sented by the 4 combinations of signs in the signal ±u(t) ± v(t) where u(t) and v(t)
are the orthogonal normalized signals defined by Eqs. (3.2) and (3.3). It turns out
that, due to the theorem of irrelevance, the noise components according to each of
the dimensions defined by u(t) and v(t) separately affect receiving the corresponding
bits. Figs. 3.3a and b represent patterns of points, or ‘constellations’, in the one- and
two-dimensional cases, respectively, for binary data.

Another way of representing several bits by a single signal consists of distinguish-
ing more than 2 values in each dimension. For instance, 4 distinct values can represent
2 bits at a time. A more concise representation results, but at the expense of diminish-
ing the distance between the points hence making receiving the corresponding bits
more vulnerable to noise. In Fig. 3.3c, 4-point constellations were used in each of
the 2 dimensions of a signal space defined by an orthonormal basis, thus resulting in
a 16-point, 2-dimensional constellation simultaneously representing log2 (16) = 4
bits. Any set of n orthonormal functions similarly defines an n-dimensional signal
space and 2k distinct points in it can be used for simultaneously representing k bits.
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Fig. 3.3 A one-dimensional constellation (a) and two two-dimensional constellations, (b) and (c).

Actually, the propagation of signals with sharp transitions like u(t) and v(t) above
is not possible without distorsion since such signals have significant frequency com-
ponents far beyond 1/T whereas circuits and antennas are very generally selective,
so only signals having a spectrum in a comparatively narrow frequency range can
actually propagate. Any signal, say s(t), can be decomposed into a sum of (infinitely
many) sinusoidal functions, or single-frequency components, by the Fourier transfor-
mation. Besides its representation as a function of time s(t), a signal can equivalently
be thought of as a function s̃(f ) of the frequency f and the range of frequencies
where s̃(f ) differs from zero is referred to as its spectrum. Discontinuities as exhib-
ited by u(t) or v(t) result in an infinitely broad spectrum, so smoother functions than
u(t) and v(t) must be used. Of course, multiplying normalized smoother functions
by ± can still be used in order to represent a binary digit. Slight shape differences
between the transmitted and received signals (apart from the addition of noise) can-
not entirely be avoided but have a negligible impact on the performance, which in
properly designed systems almost solely depends on the noise.

3.3 Receiving a Binary Symbol in the Presence of Noise

The presence of the noise term n(t) in Eq. (3.6) entails that receiving a signal does not
provide any certainty as regards which of the bits 0 and 1 has been transmitted. What
can be done is only to assess the probability Pr(0) (for instance) that the bit 0 has been
transmitted. Because the probability Pr(1) that the bit 1 has been transmitted equals
1 − Pr(0), assessing Pr(0) simultaneously assesses the probability Pr(1). Then we
can only choose as received the most probable bit, a process referred to as decision.
We must thus be able to describe the noise as random and to define the best means
for assessing these probabilities.

The most fundamental perturbation which affects any received signal is thermal
noise. Its power per dimension of the physical space at an absolute temperature of Tabs

is kBTabs/2, where kB is Boltzmann’s constant. No precise shape can be assigned to
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thermal noise. It can properly be described only in probabilistic terms. Thermal noise
has with an excellent approximation a Gaussian probability density function, namely

pX(x; σ 2) = 1

σ
√

2π
exp

(
x2

2σ 2

)

, (3.7)

where its variance σ 2 is proportional to the noise power (its positive square root σ is
referred to as its standard deviation). The meaning of this function is that the proba-
bility that the random variable X assumes a particular value x within the infinitesimal
interval [x, x + dx] is pX(x; σ 2)dx. This entails of course that

∫
pX(x; σ 2) = 1. The

function defined by Eq. (3.7) is represented by the familiar bell-shaped curve. Ac-
cording to the central limit theorem, any function which results from the addition of
many independent elementary random functions of arbitrary probability distribution
and similar amplitude has a nearly Gaussian probability distribution and it is why
it is met in the many instances where a macroscopic phenomenon results from the
joint effect of many independent microscopic events, like thermal noise.

In many practical situations, the noise has a much broader frequency spectrum
than the signal, so it may be considered as having a constant power spectral density
N0 within the frequency range where the signal is defined, meaning that the noise
power in an infinitesimal frequency interval [f , f + df ] is N0df . Then the noise is
said to be white. Although a power spectral density cannot be strictly constant within
the whole frequency range for both mathematical and physical reasons (this range is
infinite), white noise is a very convenient concept for modelling thermal noise. Its
validity actually relies on the theorem of irrelevance which tells that a given signal is
perturbed only by the noise components within its own signal space. All other noise
components may thus be ignored. A standard assumption in communication theory,
especially for comparing the performance of systems, is that the signal is received
in the presence of additive white Gaussian noise.

The noise power is obtained by integrating the noise spectral density within the
signal spectrum. The most important property of additive white Gaussian noise is that
its components in any signal space have all the same variance σ 2 = N0/2, regardless
of the orthonormal basis functions which define it3. We may thus think of the white
Gaussian noise as virtually ‘containing’ any possible signal shape. (I cannot refrain
from quoting here a delightful anecdote, freely translated from (Pignon-Ernest 1999):
At the beginning of the summer holidays, a sculptor usually working in a backyard
where children play receives a block of rough marble. Coming back after the holidays
and looking at the completed sculpture, a little girl asks: ‘How did you know that
there was a horse in this stone?’.) As a consequence, the noise variance per coordinate
remains constant, equal to N0/2, after any change of coordinates. Noise thus equally
affects signals according to any dimension, in any coordinate system.

It turns out moreover that the probability of an erroneous decision in favour of one
of the bits exclusively depends on the Euclidean distance between their representative

3 The factor 1/2 results from the power spectral density N0 being defined in terms of essentially
positive frequencies, while the theory of the Fourier integral involves negative as well as positive
frequencies, which halves the spectral density which is then referred to as ‘bilateral’.
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points in the signal space. Designing constellations so as to optimize the signal
reception in the presence of noise thus reduces to a mere problem of Euclidean
geometry become independent from the choice of the signal space basis for a given
number of dimensions. The orthonormal functions of this basis can then be chosen
in terms of their properties as regards signal propagation, essentially their spectral
characteristics. The two problems of signal design and reception in the presence of
noise of this kind become unrelated and thus can be dealt with separately. Since
then the noise performance of a constellation only depends on the distances between
its points, it is invariant with respect to transformations which preserve distances,
especially rotations. For instance, a rotation of π/4 of the 4-point constellation of
Fig. 3.3b results in the 2-point constellation of Fig. 3.3a on each of the coordinate
axes, showing that the systems represented by these constellations are equivalent as
regards their noise performance if the total received energy is the same for both (this
result can be directly proved).

Let us go back to the binary case and consider how a signal ±√
Es(t) is received

in the presence of a realization n(t) of additive white Gaussian noise, where s(t)
denotes a normalized signal, i.e., obeying Eq. (3.1). The choice of the sign made
at the transmitting end is unknown at the receiving end so it can only be guessed
in terms of the received signal r(t) = ±√

Es(t) + n(t). The most likely estimate
of this sign is that of the correlation product (r · s) = ∫

r(t)s(t)dt = ±√
E + N ,

where N = ∫
s(t)n(t)dt is a random Gaussian variable representing the noise. The

correlation product of r(t) and s(t) is easily obtained as the response of a filter
matched to the input signal r(t). A filter matched to a signal s(t) of duration T is an
electrical circuit which responds to an input very short with respect to T by delivering
an output proportional to s(T − t); then its response to r(t) at the instant T (the input
being assumed to begin at instant 0) is proportional to the correlation product (s · r).
The noise termN in it is a centred (i.e., zero-mean) random Gaussian variable having
as variance σ 2 = N0/2, regardless of the normalized function s(t), a very important
result.

Let b̂ denote the most likely hypothesis as regards the transmitted bit. The two
possible outcomes of the correlation product of r(t) and s(t) are

√
E + n+ and

−√
E + n−, where n+ and n− are two realizations of the random variable N . If n+

is smaller than −√
E when the correct sign is +, or if n− is larger than

√
E when the

correct sign is −, an error occurs, which means that the noise resulted in the receiver
making the wrong decision. The logarithm of the ratio of the probabilities Pr(b̂ = 0)
and Pr(b̂ = 1) = 1 − Pr(b̂ = 0) to be assessed, referred to as the log-likelihood ratio
of the received binary variable, is easily computed using the Gaussian probability
distribution of the noise given by Eq. (3.7), namely,

�(x) = ln

[
Pr(b̂ = 0)

Pr(b̂ = 1)

]

= ln

[
Pr(b̂ = 0)

1 − Pr(b̂ = 0)

]

= 2x
√

E/σ 2 = 4x
√

E/N0. (3.8)

It measures the ratio of the probabilities of the two possible outcomes, and it is pro-
portional to the received quantity x. Therefore the received quantity, say, the response
of the matched filter to the incoming signal, directly measures the probabilities of
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the possible outcomes. Their comparison just relies on the sign of x: if it is positive
the most probable one is 0; it is 1 if x is negative. The best binary decision b̂ is thus
[1 − sign(x)]/2, where sign(x) equals ±1 and has the same sign as x. Moreover, the
reliability of the decision is measured by the magnitude |x| which is proportional to
the logarithm of the ratio of the probability of the best decision to that of the other
one. (For instance if x = 0 the two probabilities are equal and no reliable decision
can be taken. The corresponding received symbol can then rightfully be dealt with
as erased.) The binary decision b̂, referred to as hard decision in the parlance of
communication engineering, is wrong with probability

psu =
∫ ∞

√
E

g(x; σ 2)dx = 1

σ
√

2π

∫ ∞
√

E

exp (x2/2σ 2)dx

where the subscript ‘su’ is intended to mean that the error consists of substituting a
wrong symbol for the correct one. Introducing the ‘error function’

Q(x)
�= 1√

2π

∫ ∞

x

exp (t2/2)dt , (3.9)

enables writing the probability of an error as

psu = Q(
√

E/σ ) = Q(
√

2E/N0). (3.10)

The error function Q(x) equals 1/2 for x = 0, decreases when x increases and
vanishes as x approaches infinity. A hard decision is wrong with the probability
psu given by Eq. (3.10), which only depends on the ratio 2E/N0, a fundamental
parameter in communication engineering referred to as the signal-to-noise ratio,
often abbreviated as SNR. This parameter is extremely important because it relates
the physical energy to information. It actually sets a limit to the information quantity
that a channel can transmit (see Sect. 5.2.3).

We assume in the following that the log-likelihood ratio of the most likely decision
b̂ about any received bit is available according to Eq. (3.8). The binary decision b̂

is wrong with a probability given by Eq. (3.10). The occurrence of such an error
is (easily!) avoided by not taking a hard decision (unless of course doing so is
mandatory), i.e., by keeping as far as possible the log-likelihood ratio �(x) given by
Eq. (3.8) as it results from the receiving process. This absence of decision is (a bit
paradoxically) named soft decision. Then real numbers (as defined in mathematics;
we already criticized in Sect. 2.4.3 the use of the word ‘real’) are dealt with at the
receiving end instead of bits, a process referred to as analog. The importance of soft
decisions for decoding error-correcting codes will become clear in Sect. 5.5.7.

Interestingly, the log-likelihood ratio �(x) of a received binary variable, de-

fined by (3.8), equals the derivative of the binary entropy function H2(psu)
�=

−psu log2 (psu) − (1 − psu) log2 (1 − psu) (Eq. (4.11) below), with respect to the
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error probability psu:

�(x)
�= ln [(1 − psu)/psu] = dH2(psu)

dpsu
.

The binary entropy function H2(psu) measures the quantity of information borne
by a random binary variable assuming one of its values with probability psu (see
Sect. 4.2.3).

3.4 Communicating Sequences in the Presence
of Noise: Channel Coding

3.4.1 Channel Coding is Needed

The literal communication of a sequence cannot be secured with certainty by sepa-
rately transmitting each of its symbols as described above because a received symbol
incurs an error with probability psu given by Eq. (3.10). The probability that an n-bit
sequence is correctly received (i.e., without any erroneous symbol) is (1 − psu)n, a
probability which approaches 0 however small is psu when n sufficiently increases.
The probability that the sequence as a whole is incorrectly received is its complement
to 1, namely,

Pse(n) = 1 − (1 − psu)n, (3.11)

which tends to 1 as n approaches infinity.
The development of (1 − psu)n limited to its first two terms is 1 − npsu, which

entails that Pse(n) ≈ npsu if psu is small enough. The probability of a sequence error
is according to Eq. (3.11) an increasing function of its length n: however small is
the bit error probability psu, hence however large is the signal-to-noise ratio, the
correct literal communication of a sequence is not secured and, moreover, is the
more unlikely, the larger is the sequence. Indeed, (1−psu)1/psu approaches 1/e when
psu tends to 0, where e = 2 · 718 . . . is the base of the natural logarithms, showing
that the error probability of a sequence becomes very high when n becomes of the
order of 1/psu. This seems to prevent the reliable communication of arbitrarily long
symbolic sequences since thermal noise is ubiquitous and the energy available for
representing sequences is necessarily limited.

Yet, extremely large sequences can be communicated or conserved, not only
as the product of human activities like written texts or registered data, but also in
nature, the most striking case being that of genomes billions of nucleotides long.
Moreover, genomes are conserved at the geological timescale, and the number of
occurring symbol errors is an increasing function of time. Clearly, the conservation
of such very large sequences over large time intervals is not compatible with the
expression (3.11) of the sequence error probability. Information theory fortunately
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states that long sequences can be communicated or conserved with an arbitrarily small
probability of error despite symbol errors and thus appears as the sole framework
which can account for the reliable communication of long sequences. One of its main
results, the fundamental theorem of channel coding, is that reliable communication
is possible within a precisely defined limit referred to as channel capacity through
an unreliable channel, however paradoxical it may look. Firstly a mere theoretical
result proven without exhibiting any means for its practical implementation, this
statement became a communication engineering reality with the development of
error-correcting codes.

Error-correcting codes owe their efficiency to their redundancy. For securing the
communication of some sequence of length k, it is first transformed into a longer
one of length n > k which is transmitted instead of the initial sequence. Then, the
dependency that this encoding establishes between the symbols entails that errors in
certain symbols can be corrected thanks to the errorless ones. To this end, the received
version of the encoded sequence, hence affected by symbol errors, is processed so
as to recover the encoded sequence, hence the original one. Referred to as decoding,
this process fails with a non-zero probability which can however be kept ignorable by
simultaneously increasing k and n while maintaining the information rate R = k/n

approximately constant, provided R does not exceed an impassable theoretical limit
stated by the fundamental theorem of channel coding, referred to as the channel
capacity.

Replacing the given initial sequence by a longer one seems at first sight to go
against its conservation in the presence of errors. First of all, even if the probability
of symbol error is kept constant, more symbol errors occur in the longer encoded
sequence than in the original one. Moreover, if a constant energy per symbol of the
original message is available and results in a received energy E, the total received
energy kE must be shared among the n > k symbols of the encoded message,
leaving only kE/n < E for each of them. For a constant noise power density,
this results in an increase of the symbol error probability according to Eq. (3.10).
Lengthening the sequence and sharing the available energy among more symbols
seem both to be detrimental to the probability of correctly receiving the sequence.
However, information theory paradoxically tells that such codes, provided they are
properly decoded, can make the error probability arbitrarily small up to the channel
capacity. This theorem will be expounded in Sect. 5.4 below and an overview on
error-correcting codes will be given in Sect. 5.5.

It must be emphasized that the existence of a drastic limit that noise imposes
to literal communication as well as the possibility of escaping the effects of noise
within this limit were entirely novel results brought by information theory and com-
munication engineering. Prior to Shannon’s statement of the channel coding theorem
(Shannon 1948), it was accepted as obvious that an unreliable channel would result
in unreliable literal communication. That it is not so, but that noise only sets a limit
to the rate at which information quantity can be communicated, is a major result of
information theory. The channel noise thus acquired a crucial importance.

The results of information theory and communication engineering about the con-
servation of sequences should be used in many domains other than engineering. They
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should be of paramount importance in sciences devoted to symbolic sequences, es-
pecially linguistics and semiotics. Unfortunately, these sciences were founded much
before Shannon’s paper was published. They ignored that literal communication is by
no means a trivial problem and implicitly considered it as secured. Nowadays, their
contemporary upholders still ignore information theory and communication engi-
neering, mainly because they misunderstand or do not know them for lack of proper
popularization. The results of information theory and communication engineering
remain a dead letter in these sciences (Battail 2009, 2012). In them as well as in biol-
ogy, error-correcting codes appear as the necessary solution to the crucial problem
of sequence conservation, but both the problem and its solution passed unnoticed as
pertaining to information theory, which remained an almost cryptic science. If the
problem is not perceived, how could its solution be understood and accepted?

3.4.2 Redundancy Enables Channel Coding

No concept of information theory is more useful than redundancy in engineering as
well as biology because of its prominent role in making sequences distinct, thereby
enabling their conservation in the presence of symbol errors. Unfortunately, no one
is more misunderstood. It is often perceived as a mere repetition which is often
spurious and at best can provide spares. In sharp contrast, it plays the essential role
of ensuring the integrity of an information. Contrary to the usual presentation of
information theory which conforms more or less to the framework of Shannon’s
seminal article (Shannon 1948), we anticipate here on our following discussion of
information theory by giving an example of channel coding, the most important
application of information theory to communication engineering. Then the meaning
of redundancy and its necessity will become clear, together with the meaning of the
very concept of information.

Let us assume that we have to transmit a sequence of time-successive binary
symbols. A binary symbol is referred to here as a bit, an acronym for ‘binary digit’4.
The bits of this sequence are mutually independent. They are arbitrary as well as their
number k. They are referred to as the ‘information bits’ and this sequence itself as
the information message. It is unique and cannot suffer any alteration without losing
its identity. It is thus a nominable entity in Barbieri’s meaning (Barbieri 2007), as
defined in Sect. 2.4.3.

The channel available to communicate this information message is unreliable, in
the sense that a received bit has some non-zero probability of being different from
the transmitted one. The physical process which results in channel errors escapes any
control. For securing the faithful transmission of the information message, hence to
ensure its integrity, we wish to endow it with resilience to channel symbol errors. To

4 Contrary to Shannon and most engineers and information theorists, we do not use ‘bit’ for naming
the binary unit of information quantity because doing so risks to hide redundancy to hasty or lay
readers. In order to avoid such a confusion, we name this unit ‘shannon’; see Sect. 4.2.1
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Fig. 3.4 Channel coding: example of a convolutional recursive encoder. The information sequence
u enters at left and also appears at the upper output at right as v1. The D-shaped devices are delay
elements of 1-bit duration which together constitute a 2-bit memory, also referred to as a shift
register. A combination of the input bit and of the 2 bits which precede it (available in the 2-bit
memory) according to the indicated connections (+ denotes addition modulo 2) appears as the lower
output, and the successive bits thus calculated constitute the redundancy sequence v2. The bits of
sequences v1 and v2 are transmitted in alternance. The dashed box which calculates the redundancy
bit is a ‘rate-1 encoder’ which delivers a single bit in response to each input bit

this end we transform it, according to a process referred to as channel coding, into
an encoded sequence which is actually transmitted over the available channel.

As an example, the encoded sequence may be generated by the device5 of Fig. 3.4.
The successive bits of the information message, coming from the left, enter the dotted
box labelled rate-1 encoder. Simultaneously, they leave the device through the upper
right output. The rate-1 encoder consists of a memory of length μ = 2 and contains
modulo-2 adders which combine the input information bit and the bits contained in
the memory according to the indicated connections (addition modulo 2 of two bits is
the same as ordinary addition except that 1 + 1 = 0). The output of the rate-1 encoder
is connected to the lower output of the whole device. Every time an information bit
enters the encoder, two bits leave it: the information bit itself and the one calculated
by the rate-1 encoder, to be referred to as redundancy or check bit. The sequence of
redundancy bits will be referred to as the redundancy or check sequence. The bits
of the upper and lower output, i.e., the information and redundancy bits, are sent
alternately (this operation, referred to as ‘parallel-to-serial conversion’, is not shown
in the figure).

A set of n-symbol sequences can be endowed with the Hamming metric, which is
relevant when errors possibly affect their symbols. The Hamming distance between

5 This encoder is referred to as ‘convolutional recursive systematic’; when combined with an inter-
leaver, two such encoders generate a turbocode like that which first succeeded in closely approaching
the channel capacity (Berrou et al.1993; Berrou and Glavieux 1996; Guizzo 2004) (see Sect. 5.5.5).
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two sequences of same length is defined as the number of positions where their
symbols are different. The larger their Hamming distance, the more unlikely an error
pattern can change one of them into the other. An error-correcting code like the one
generated by the device of Fig. 3.4 is a set of n-symbol sequences which are made
distinct from each other as having a minimum Hamming distance between any two
of them larger than 1.

Examples of sequences generated by the encoder of Fig. 3.4 are now given. It
is easily shown that in response to the sequence u = 10 . . . made of a single 1
followed by infinitely many bits 0, it generates v2 = 111011011 . . . , consisting of
111 followed with the motif 011 repeated infinitely many times. Then the encoded
sequence is at an infinite Hamming distance from the all-0 sequence generated by
the all-0 input sequence. If the input sequence is u = 1110 . . . (where . . . stands
for infinitely many zeros), however, the response v2 = 1010 . . . (similarly followed
with infinitely many zeros) has a finite number of ones, so the generated sequence
where the bits of the sequences u = v1 and v2 alternate, namely 110111, is at a
Hamming distance of 5 from the all-0 sequence. The number of bits 1 in a sequence,
referred to as its weight, is the Hamming distance from the all-0 sequence. The
code generated by the encoder of Fig. 3.4 is referred to as linear, meaning that its
words are defined by only using addition and multiplication of the q-ary field, q

denoting the alphabet size (q = 2 above). The vast majority of currently used codes
are linear. Only primes or primes raised to an integer power can be endowed with the
mathematical structure of a field. In the binary field, for instance, the addition rule is
modulo 2. Linear codes are such that the smallest non-zero weight of its codewords
equals the minimum distance of the code, i.e., the main parameter used to assess its
performance as regards error correction.

At the receiving end, both the information and redundancy sequences possibly
contain erroneous bits due to channel symbol errors. The connections in the rate-1
encoder have been chosen such that the encoded sequence where the information and
redundancy bits alternate is at a large enough minimum Hamming distance d from
any other sequence that the encoder can generate. If less than d/2 bit errors occurred,
the sequence actually emitted can be recovered with certainty as being closer for the
Hamming metric to the received sequence than any other encoded sequence. In the
example of Fig. 3.4 the minimum distance secured by the encoding is d = 5, so
the encoded sequence, hence the information message, can be exactly recovered in
the presence of any pattern of 1 or 2 bit errors. Using a longer memory size μ can
result in larger values of the minimum distance d , hence in more numerous bit errors
being corrected by appropriate decoding means. The device of Fig. 3.4 is redundant
as delivering 2 bits every time it receives an information bit. It is referred to as a
rate-(1/2) encoder. The rate of a binary code having n-bit words with k information
bits is defined in general as the ratio R = k/n. Any rational rate less than 1 can
actually be obtained by the use of more complicated but similar encoding devices.

Notice that the encoded sequence delivered by an encoder like that of Fig. 3.4
obeys precise constraints which result in keeping a minimum distance with respect
to all other sequences that this encoder can generate. The set of sequences, or words,
that an encoder can generate is referred to as an (n, k) binary code if it is made of
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n-bit words with k information bits, with n > k since the code is redundant. Only 2k

n-bit words belong to it while 2n different n-bit sequences exist. The generated code
is thus a minority subset of all possible binary sequences of length n, and it owes its
success in correcting errors to this property. It is only a fraction 2−(n−k) = 2−n(1−R)/R

of the total number of n-bit sequences, which vanishes if n − k approaches infinity.
The probability of a decoding error can thus be made vanishingly small as the length
n of the codewords approaches infinity.

Each encoded bit, whether of information or of redundancy, actually contains
an information quantity of k/n binary units (referred to here as ‘shannons’; see
Sect. 4.2.1 below), equal in the binary case to the code rate R: it turns out that
the encoding actually ‘diluted’ the information among all symbols. Indeed, at the
receiving end, the whole encoded sequence, hence the information message, can
be exactly recovered given the correct values of at least k of its symbols arbitrarily
chosen (the other symbols being ignored6), regardless whether they are information
or redundancy symbols7. The same holds true for a code using an alphabet with
α > 2 symbols, referred to as α-ary; then each encoded symbol bears an information
quantity of (k/n) log2 (α) = R log2 (α) shannons.

The sequence generated by the encoder of Fig. 3.4 is said ‘systematic’ to mean
that the information message is explicitly present in it at a set of given positions (it
is here the sequence of bits at odd positions, due to the parallel-to-serial conversion
which alternates the information and redundancy bits). A further transformation of
the output sequence leaving the rate unchanged, like scrambling or rate-1 encoding
in the above meaning, makes the information message no longer explicitly readable
in the encoded sequence. Yet the sequence thus obtained still represents the original
information message. We may define an information8 as the equivalence class of all
the encoded sequences which can be associated with a same information message.
Since there are infinitely many possible encodings, this equivalence class contains an
infinite number of elements. All the possible encodings are redundant except leaving
the message uncoded or transforming it using a rate-1 encoder, so the length k of
the original information message appears as the length of the smallest sequences
belonging to this class, which can thus be taken as a quantitative measure of the
information. The information message may be likened to the information itself,
provided it is kept in mind that it is merely the representative of a wide equivalence
class. It has already been said that the information message is a nominable entity in
Barbieri’s meaning (Barbieri 2007) since it suffers no change. One may also notice

6 In engineering words, ignoring a symbol is referred to as its ‘erasure’: when the receiver cannot
take any decision about a symbol, it does not take it into account. An erasure must be distinguished
from an error which consists of taking a wrong decision.
7 This is a theoretical result. Actually correcting up to n − k erased bits within an n-bit word can
always be performed by comparing each of the codewords with the the received sequence, a very
complex (brute force) process that a specific algorithm possibly alleviates.
8 Notice that we refer here to an information, not to information in general. We make here more
precise a statement of Sect. 2.2.
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that the binary numeration associates with it a natural integer which is unique as
regards its arithmetic properties.
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Chapter 4
Information Theory as the Science of Literal
Communication

Abstract Chapter 4 is devoted to information theory as the science of literal commu-
nication. It begins with describing Shannon’s paradigm, which identifies the actors of
any communication: (1) the source, which generates some message; (2) the channel
which propagates the message; and (3) the destination which receives it. The match-
ing of these entities to each others needs using devices which transform the message
by coding, of two main types. Source coding is intended to shorten the message
that the source delivers. Channel coding is intended to protect it against the symbol
errors which occur in the channel, which demands lengthening the message. Both are
assumed to be exactly reversible. Quantitative measures of information are defined,
based on the improbability of symbols and messages. The source entropy measures
the average information quantity borne by each of the symbols of the message it
delivers. The channel capacity measures the largest information quantity that it can
transfer. Two fundamental theorems state that source coding can reduce the message
length up to a limit set by the source entropy, and that errorless communication is
possible in the presence of symbol errors, but only provided the source entropy is
less than the channel capacity. A normalized version of Shannon’s paradigm assumes
that the message is transformed by source coding followed by channel coding, both
achieving their theoretical limit. A simple proof of the fundamental source coding
theorem is presented and the Huffman source coding algorithm is described. Com-
ments about source coding help understanding the very concept of information and
its relationship with semantics.

Chapter 3 briefly described the fundamentals of communication engineering and
has shown that messages and signals must be dealt with as random. First of all, as
stated in Shannon’s quotation of Sect. 2.2 because any communication system must
accept a broad variety of messages, so the one to be actually communicated is not
known in advance. Second, as emphasized in Chap. 3, because noise is the most
important factor which limits the performance of communication systems and can
only be described as a random process. It is why Shannon’s information theory is
entirely based on probabilities. The present chapter is devoted to it. Many treatises
have been written on the subject besides Shannon’s seminal work (Shannon 1948),
e.g., (Gallager 1968; Cover and Thomas 1991; Battail 1997), but they are not aimed
at popularization. Space lacks here for summarizing their content. We now present
information theory in a rather informal manner mainly intended to give an insight
on the matter. For simplicity’s sake, and because this case suffices for introducing
the main concepts needed in what follows, this presentation is mainly restricted to
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SOURCE CHANNEL DESTINATION

perturbations

message

Fig. 4.1 Basic scheme of a communication: Shannon paradigm

discrete information. AppendixA also contains in Sect.A.3 an overview of Shannon’s
information theory.

Shannon’s papers have been collected in (Sloane and Wyner 1993). Papers of
historical significance in the development of information theory have been gathered
by D. Slepian (1974), and we will refer to this work to cite them.

4.1 Shannon’s Paradigm and its Variants

4.1.1 Basic Paradigm

The general scheme of a communication, referred to as Shannon paradigm, is rep-
resented in Fig. 4.1. A source generates a message intended to a destination. The
source and the destination are distinct entities, hence spatially separated, but there
exists between them a channel which, on the one hand, propagates its input up to the
destination where the corresponding output response can be observed; and, on the
other hand, suffers perturbations, collectively referred to as noise, which entail that
the input to the channel does not suffice to determine its output with certainty. The
destination has no other means to access the transmitted message than observing the
channel output.

The source is most often assumed to permanently generate messages. As already
stated in Sect. 3.4, the perturbations are very important. It is why information the-
ory integrates them in its channel representations. Contrary to Fig. 4.1 where the
perturbations are represented outside the box labelled ‘CHANNEL’, the channel
models in use actually describe how they act on the channel input and determine its
output (see Sect. 5.1 below). From now on, thus, we consider the perturbations as
intrinsic to the channel.

The scheme of Fig. 4.1 or its variants is still relevant if the source and the destina-
tion are separated in time rather than in space, a case already mentioned in Sect. 2.6.
Communication then consists of recording a message which is read later. The chan-
nel is no longer a propagation medium, but consists of some physical support which
saves long-lasting modifications specified by writing signals. Receiving consists of
reading the written signals. This interpretation of the recording and reading process as
a channel in the information theoretic sense is important as showing that information
theory is relevant to this case as well as to communications over space.
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Giving some examples, the source may be somebody who speaks and the des-
tination somebody who listens: then, the channel is ambient air; or the source is a
person who writes and the channel a sheet of paper, or maybe the writer and the
reader are connected through a proper electrical or electronic medium. The scheme
of Fig. 4.1 clearly applies to a wide variety of sources, channels and destinations.
The word ‘paradigm’ designates the general model of some structure, independently
of the interchangeable objects the relations of which it describes (for instance, in
grammar). This scheme was introduced by Shannon in 1948, in a slightly different
form, at the beginning of his seminal paper (Shannon 1948). It may now look trivial,
but this simple identification of the partners of a communication was a necessary
prerequisite for developing the theory.

As recalled above, the main property of the channel in the information-theoretic
meaning is the presence of perturbations which affect the transmitted message. If one
wonders at the importance given to phenomena which often pass unnoticed in daily
life, one should keep in mind that observing the channel output, which is necessary to
perceive the message, is a physical measurement which can be performed only with
finite precision. The reasons which limit the measurement precision are many and
provisions can be made to improve it. However, the pervasive presence of thermal
noise, which was dramatically confirmed by the discovery of the ‘fossil noise’ of the
universe by Penzias andWilson in 1965, suffices to justify the central role given by the
theory to perturbations. One of the most important conclusions of information theory
is indeed to identify noise as the factor that ultimately limits the communication
possibilities.

4.1.2 Variants of Shannon’s Paradigm

If we assume that the source, the channel and the destination are arbitrary, nothing
a priori guarantees the mutual compatibility of the source and the channel, on the
one hand, and of the channel and the destination, on the other hand. For instance,
in radiotelephony, the source and destination are humans, but the channel consists
of propagating electromagnetic waves. A human being has no natural means for
transmitting and receiving such waves, except the perception of light. We thus have
to augment the scheme of Fig. 4.1 with blocks representing the devices intended to
perform the technical functions of converting and matching. One then obtains the
scheme of Fig. 4.2a. It is merely a variant of the scheme of Fig. 4.1, since the set
comprising the source and the transmitting device on the one hand, that comprising
the reception device and the destination on the other hand, may be interpreted as a
new source–destination pair now matched to the initially given channel (Fig. 4.2b).
One may as well consider the set comprising the transmitting device, the chan-
nel and the receiving device as being a new channel, matched to the original pair
source–destination (Fig. 4.2c); thus, we considered in previous examples as a chan-
nel a telephonic or telegraphic circuit, made of the set of transmitting devices, a
propagation medium, and a set of reception devices.
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S TA C RA D

S TA C RA D

new source new destination

S TA C RA D

new channel

S TA1 TA2
A

normalized source

C RA2 RA1
B

D

a

b

c

d

normalized destinationnormalized channel

Fig. 4.2 Variants of Shannon’s paradigm. S stands for ‘source’, C for ‘channel’ and D for
‘destination’. TA means ‘transmission apparatus’ and RA, ‘reception apparatus’

A more fruitful point of view actually consists of splitting each of the transmission
and reception apparatuses into two blocks, one matched to the source (or destination),
the other one matched to the input (or output) of the channel. Interestingly, this
scheme enables normalizing the characteristics of the blocks of Fig. 4.2, redefined
as follows: new source before point A in Fig. 4.2d; new channel between points A
and B; new destination beyond point B. The engineering problems then consist of
separately designing the pairs of matching blocks denoted in the figure by TA1 and
RA1 on the one hand, by TA2 and RA2 on the other hand. We differ to Sect. 4.1.3
defining what this announced normalization consists of because we first need to
introduce the concepts of source and channel coding.

In general, one is free to redefine the borders of blocks in Fig. 4.2 for the sake of
analysis; cutting any apparatus chain linking a source and a destination in two points
such that the origin of the message useful to the destination is on the leftmost block,
and all places where perturbations occur are located in the central block, defines a
new triplet source–channel–destination.
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Description of the perturbations and of the transmitted messages, and of their
transformation into signals which can propagate, belongs to the field of signal theory.
Messages and signals undergo the transformations necessary for their transmission,
especially in the form of modulation and coding (the latter word having several
meanings) but bear a more fundamental (and more difficult to define) entity which
remains unchanged in such transformations: the information. Information theory
provides a quantitative measure of it, at the expense indeed of important restrictions
to be later expounded, studies its communication and the impairments it undergoes.
The relevant quantities have a statistical meaning and the main theorems establish
the existence of limits.

The invariance of information with respect to the messages and signals which bear
it implies that one may choose, among the set of equivalent messages which represent
the same information, those which possess some a priori favourable properties. In
this way we shall introduce the coding operations, in the main two meanings of this
word.

4.1.3 Functions and Limits of the Coding Processes

Since it is possible to associate with a given information several equivalent messages,
transformations of an original message may be used in order to endow it with a
priori favourable properties. What are these properties? Of what will consist these
transformations, referred to as coding processes? How, more specifically, will be
performed the normalization of the blocks ‘source’, ‘channel’and ‘destination’which
has been announced above?

We now intend answering these questions. First of all, let us notice that the most
important results of information theory concern the ultimate limits of the coding
processes and that they are expressed in terms of the quantities which measure in-
formation, i.e., source entropy and channel capacity, to be introduced in Sect. 4.2.1.
These quantities acquire therefore an operational significance, which confirms their
adequacy to communication problems and enlightens their meaning.

One may a priori contemplate to transform a symbolic message by source coding
and by channel coding. (Cryptography is a third commonly used kind of coding
which is of no interest to us and will be left aside.)

Source coding Source coding aims at maximum conciseness. In engineering, using
a channel costs the more, the longer the message, where ‘to cost’should be understood
in a very broad sense, that of needing the use of some limited resource like time,
power or bandwidth. Coding may thus, for diminishing this cost, aim at substituting
a message as short as possible for the original message. This transformation should
be reversible in the sense that the exact recovering of the original message should be
possible.

Channel coding The aim of channel coding is to protect the message against the
channel perturbations. We laid emphasis above on the necessity of taking into account



56 4 Information Theory as the Science of Literal Communication

S
ideal

source
encoder

ideal
channel
encoder

ideal
source

decoder

ideal
channel
decoder

A

normalized source normalized channel  
redundancy-free error-free redundancy-free

C
B

D

normalized destination

Fig. 4.3 Normalization of the blocks ‘source’, ‘channel’ and ‘destination’ of Shannon’s paradigm.
S, C and D denote the original source, channel and destination, respectively

the channel perturbations, up to make of their existence the specific property of a
channel. Channel coding is intended to improve the communication reliability over
the given channel, despite the presence of noise.

Normalizing the blocks of Shannon’s paradigm It now becomes possible to
precisely define the announced normalization of the blocks of Fig. 4.2. The message
generated by the source is first transformed by source coding into a message devoid of
redundancy, i.e., where the successive symbols are mutually independent and where
all the alphabet symbols occur with an equal probability. This encoding matches the
source characteristics and its result is highly vulnerable to perturbations since any of
its symbols is essential to its integrity. Channel coding thus becomes mandatory so
as to protect the message generated by the source encoder against the channel noise,
which necessarily demands reintroducing redundancy.

We may assume that source coding has been performed ideally. Then, channel
coding just protects a redundancy-free message against the channel perturbations. If
the message to be encoded is not completely devoid of redundancy, the protection
achieved is at least that for a redundancy-free message: exploiting some remaining
redundancy may be but beneficial as regards protection against noise. We may sim-
ilarly assume that ideal channel coding has been performed, resulting in error-free
communication. One may then redraw Fig. 4.2d as in Fig. 4.3, where the normalized
source generates a redundancy-free message and where the normalized channel is
error-free.

Suppressing the redundancy of the original message by source coding and then
reintroducing redundancy by channel coding may look self-contradictory, but the
redundancy in the original source is not necessarily well fitted to the properties of
the channel to which it is connected. Moreover, rather than designing a coding system
in order to match a particular source to a particular channel, the normalization as
just defined enables dealing with the source and the channel separately, which is
simpler and more flexible. Any source can then be connected to any channel without
needing that this particular source be specifically fitted to this particular channel.
This normalization has also an auxiliary advantage: the message alphabet at points
A and B of Fig. 4.3 is arbitrary. We may thus assume that it is the simplest possible,
i.e., binary, without significantly restricting generality.

Fundamental theorems We based the proposed normalization on coding processes
resulting in:
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• a redundancy-free message, although the original message is generated by a redundant
source, as concerns source coding;

• an error-free message after decoding, although the coded message is received through a
perturbed channel, as concerns channel coding.

The possibility that coding processes have these results is established by the funda-
mental theorems of information theory, under conditions they precisely state. Their
proofs do not demand the explicit knowledge of the means which enable obtaining
these results and, in many instances, these means remain unknown.

The fundamental theorem of source coding tells that it is possible to eliminate all
redundancy from a stationary source. Optimized source coding results in a message
with an average length per symbol of the original source equal to its entropy expressed
using the alphabet size α for defining the information unit, i.e., using logarithms to
the base α. Entropy is defined in Sect. 4.2.2.

Algorithms which can achieve this result are known, especially the Huffman
algorithm, as we shall see in Sect. 4.3.4. Very schematically, such algorithms aim
at constructing a set of words (finite sequences of symbols) for representing the
symbols of the αk-ary alphabet, where k is an integer. It should first be possible to
identify these words without ambiguity, which one expresses by referring to such
a code as decipherable. These words should be the shortest, the more frequent the
αk-ary symbols they represent. If optimum encoding can be reached for finite k,
then this length is proportional to the opposite of the logarithm of the occurrence
probability of the corresponding symbol. If this is not the case, increasing k enables
improving the relative precision of the approximation of real numbers by integer word
lengths. Besides and more important, increasing the number of words entails that the
distribution of their lengths can better and better match the probability distribution
of the corresponding messages. (More subtle means exist which avoid the need of
using a source extension, e.g., arithmetic source coding algorithms.)

The fundamental theorem of channel coding is asymptotic as the length n of
the words associated with blocks of k source symbols approaches infinity. Keeping
constant the code rate R = k/n implies that k increases proportionally to n. (This
statement is not the most general possible, especially because it is assumed here that
the channel input and output alphabets are the same.) The necessary condition for
the decoding error probability to approach 0 as n increases can be stated as follows:
the source entropy should be less than the channel capacity (source and channel
are assumed to satisfy regularity conditions to be indicated in Sect. 5.4, which are
mandatory to guarantee the existence of these quantities). Thus, the presence of
channel perturbations does not limit the reliability of the message communication,
as measured for instance by the decoding error probability, but only the possible
information rate through this channel. The highly desirable result of an arbitrarily
small error probability can however be obtained only when using an appropriate
code. Before we can more precisely deal with the fundamental theorems of source-
and channel coding, we must introduce the quantities which measure information,
in terms of which the limits of what is possible in both cases can be expressed.
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4.2 Quantitative Measures of Information

4.2.1 Principle of Information Measurement

The quantitative measurement of information was a preliminary condition for
elaborating the theory. The obvious remark that

communicating a message is of no use if its destination already knows it

led Shannon

a) to deal with an information source as generating random events, the sequence of which
constitutes the transmitted message;

b) to define the information quantity borne by this message as a measure of its unpredictabil-
ity.

When the source is stationary, i.e., if its operation does not depend on the chosen
time origin, one may define an average information quantity generated by this source
and borne by the transmitted message: its entropy.

One should notice that the distinction between a useful message and perturbations
entirely depends on the destination’s aim. As an example, the sun generates a radia-
tion which is spurious in a satellite communication system. For a radio-astronomer
who studies the solar radiation, on the contrary, the signal of the satellite is obvi-
ously a perturbation. Actually, one agrees to locate in the block ‘source’of Shannon’s
scheme the events interesting the destination and in the block ‘channel’ the perturb-
ing ones (still according to the destination’s interest). Noise is a purely subjective
concept. This important remark could be thought of as defining a relativity princi-
ple of information. It should moreover be noticed that the quantitative measures of
information are not intrinsic to an information, but depend only on the probability
distribution which is associated with it.

Another information measure concerns the information quantity that the knowl-
edge of the output of a channel provides about its input. It turns out that this quantity
is symmetric, in the sense that it also measures the information quantity provided by
the channel input as regards its output (as we shall see), so it is called mean mutual
information (often shortened into ‘mutual information’, where ‘information’ is itself
a shortening of ‘information quantity’). This quantity is different from the entropy of
the output message and smaller than it. Indeed, far from providing more information,
random perturbations of the channel can but impair the transmitted message.

The mean mutual information does not characterize the channel alone, since it
also depends on the source. In order to measure the ability of a channel to commu-
nicate information, information theory defines its capacity as the maximum of its
mean mutual information (the existence of which is proved provided some regular-
ity conditions are met) with respect to all possible stationary and ergodic sources
connected to its input. Ergodicity, a concept distinct from stationarity, implies the
homogeneity of the set of messages that the source is likely to transmit. For an er-
godic source, indefinitely observing a single transmitted message is almost surely
sufficient to statistically characterize the set of all possible transmitted messages.
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Information theory thus enables associating an average quantity with the first
two blocks of the scheme of Fig. 4.2: the entropy with the source and the capacity
with the channel. When the events which bear information are choices of elements,
called symbols, in some predetermined set called alphabet, which we assume to be
not only discrete but finite (in order to make the symbols practically distinguishable
from each other), the message consists of a sequence of symbols and is referred
to as symbolic. One may obviously replace the transmitted message by any other
one which results from the original message by deterministic (i.e., non-random)
and reversible transformations. There is no creation and, at best, no destruction of
information in such encoding processes, so information appears as invariant with
respect to the set of messages which may be used in order to communicate it (we
defined it as an equivalence class with respect to these messages in Sect. 2.2).

The blocks of Fig. 4.2 must often be drastically simplified in order to make com-
putations tractable. The conclusions drawn will nevertheless be general enough to
pertain to many concrete situations. The simplifications will most often be neces-
sary only in order to make computable some fundamental quantities, the existence
of which remains however guaranteed under fairly broad assumptions. Moreover,
even if these assumptions are not exactly satisfied (it is often difficult or impossible
to acquire the experimental certainty they are so), the solutions to communication
problems provided by the theory, consisting of device structures or algorithms, will
generally remain usable, maybe at the expense of loosing the exact optimality asserted
by the theory when the relevant assumptions are actually satisfied.

4.2.2 Proper and Mutual Information

First of all, is a quantitative measure of information just conceivable? As we have its
real-life experience, information obviously has qualitative aspects (semantic, affec-
tive or aesthetic, for instance) which by hypothesis escape a quantitative measure.
Quantitative measures of information and the science which is based on it, i.e., in-
formation theory, are thus a priori reductionist. They only retain a very partial facet
of the concept of information but, as it will clearly appear in the following, precisely
the one which is relevant to communication techniques. We may not too much insist
on this restriction: the theory was conceived in a modest framework, out of which it
is imprudent to extrapolate its conclusions.

The messages delivered by the source are sequences of symbols, i.e., of elements
of some predetermined set called alphabet. In order to introduce the quantitative
measure of information (and, more generally, the quantities and concepts of infor-
mation theory) we assume that this alphabet is discrete, and even finite. For instance,
such a source generates a text made of letters from the Latin alphabet, or a sequence
of binary digits. The point of view of information theory leads us to consider ran-
dom sources and channels. We saw indeed that one of the essential properties of a
channel is the presence of perturbations, which cannot generally be described but in
probabilistic terms. Therefore the destination can only make hypotheses as regards
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the transmitted message and choose the most likely of them, given the received mes-
sage. The source output is thus dealt with as random. Of what use would indeed be
to transmit a message if it were already known by its destination?

As unpredictability appears as an essential attribute of information, one is led to
equate the quantitative measure of information to the measure of unexpectedness,
likened itself to that of improbability. Thus, the information quantity h(x) brought by
the occurrence of an event x of probability Pr(x) will be measured by some increasing
function f (·) of its improbability 1/Pr(x):

h(x) = f [1/Pr(x)]. (4.1)

If the occurrence of some event x is certain, Pr(x) = 1. This event brings no
information at all, so the function f (·) should be such that f (1) = 0.

It is reasonable to assume that the joint occurrence of two independent events x

and y brings the sum of their individual information quantities, hence that we should
have:

h(x, y) = h(x) + h(y) (4.2)

hence

f [1/Pr(x, y)] = f [1/Pr(x)Pr(y)] = f [1/Pr(x)] + f [1/Pr(y)] (4.3)

since, for independent events, Pr(x, y) = Pr(x)Pr(y).
Using for f (·) the logarithmic function fulfills this requirement, as well as that to

cancel when its argument is unity since log (1) = 0. The logarithmic function has thus
been chosen for f (·) in Eqs (4.1) and (4.3). The choice of the logarithmic base defines
the information unit. Shannon proposed to take this base equal to 2, so as to make
the information unit equal to the information borne by the choice of one among two
equally probable issues. He named this information unit ‘bit’as an acronym of binary
digit (Shannon 1948). It turns out that ‘bit’ has since that time very often be used as
an abridgement for ‘binary digit’. A unit and a digit are very different entities, so it
makes generally no sense to associate an information quantity with a binary digit, for
lack in general of an associated probability; even if it bears a meaningful probability,
the corresponding information quantity equals the binary unit in the sole case where
this probability equals 1/2. A binary digit thus bears at most an information quantity
of one binary unit. It bears a smaller, often much smaller, information quantity, if
any, in a redundant binary sequence as met in practical situations. The ambiguity of
the acronym ‘bit’does not mislead communication engineers who are aware of it and
use the context for determining if ‘bit’ refers to the information unit or to a binary
digit. That the same word designates such different entities is, however, puzzling for
the layman who excusably tends to equate a binary symbol with an information unit
since both are named ‘bit’, thereby denying redundancy. We lay much emphasis is
the sequel on the crucial importance of redundancy so we cannot accept this meaning
of the acronym ‘bit’.

To avoid this confusion, the International Standards Organization (ISO) pro-
posed the name of shannon, abbreviated as Sh, for the binary information unit
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(Roubine 1970). We use it in the following, at variance with most engineers and
information theorists who still designate by ‘bit’ the information unit. We exclu-
sively use the acronym ‘bit’ in order to designate a binary digit or a binary symbol.
Thus, it will make sense to express an information quantity in shannons per bit,
which will be specially useful when studying the coding processes.

Binary logarithms will be used throughout in the sequel, denoted by log2 (·) and
more often by log ( · ). Natural logarithms will be occasionally useful and will be
denoted by ln (·).

One thus associates with the occurrence of an event x the information quantity

h(x) = log [1/ Pr (x)] = − log [ Pr (x)]. (4.4)

It is a positive (more precisely, non-negative) quantity, since a probability is a positive
number smaller than 1. The logarithm of such a number is negative so the minus sign
makes the right hand side positive.

Let now x and y be two events, possibly mutually dependent. One may asso-
ciate with the pair of events (x, y), as a straightforward extension of Eq. (4.4), the
information quantity

h(x, y) = − log [ Pr (x, y)], (4.5)

where Pr(x, y) designates the joint probability of the two events. We may also de-
fine the information quantity associated with x (for example) conditioned on the
occurrence of y, h(x|y), as:

h(x|y) = − log [ Pr (x|y)], (4.6)

where Pr(x|y) is the probability of x conditioned on y, i.e., the probability that x

occurs given that y occurred.
From Bayes’ rule

Pr (x, y) = Pr (x|y) Pr (y) = Pr (y|x) Pr (x), (4.7)

and from Eqs. (4.5) and (4.6), it follows that

h(x, y) = h(x|y) + h(y) = h(y|x) + h(x). (4.8)

Notice that, if x and y are independent, h(x|y) = h(x) so then Eq. (4.2) obtains.
One may also wish to measure the information quantity that the occurrence of one

of the events, say y, provides as regards the other one, x. This information quantity
is especially relevant when one identifies x to the choice of a signal as a channel
input and y to the corresponding output. Pr(x) is then the a priori probability that x

is transmitted and Pr(x|y) the a posteriori probability that x has been transmitted, y

being received. A measure of this information quantity is:

i(x; y) = log [ Pr (x|y)/ Pr (x)], (4.9)
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a logarithmic measure of the probability increase which results from x being condi-
tioned on y. It actually reduces, as expected, to h(x) if Pr(x|y) = 1, since then the
occurrence of y is equivalent to that of x; it is actually 0 if x and y are independent,
since in this case Pr(x|y) = Pr(x), so y brings indeed no information about x.

Applying Bayes’ rule (4.7) shows that i(x; y) is actually symmetrical:

i(x; y) = log [ Pr (x, y)/ Pr (x) Pr (y)] = h(x) + h(y) − h(x, y) = i(y; x).

This quantity is referred to as mutual information (the quantity defined by Eq. (4.4) is
then said proper information). At variance with the proper information h(x) which is
obviously non-negative, the mutual information i(x; y) may be negative. Rather than
this quantity, its average is intrinsically positive and much more useful, as shown in
Sect. 4.2.4. Positiveness is indeed an expected property of an information measure.

4.2.3 Entropy and Average Mutual Information

Entropy of a discrete random variable Individual events are generally less im-
portant than averages in a probabilistic context. Thus, we consider an information
source as generating repetitive events (for instance, but not necessarily, periodic),
obeying a known probability distribution which will be assumed to be invariant with
respect to time. Such a source will be referred to as stationary. We shall moreover
restrict ourselves to the case where the source is discrete and even finite. The relevant
events will then be interpreted as choices of symbols in a given alphabet. We shall
moreover provisionally assume that the successive choices are mutually independent.
In other words, the symbols of this alphabet being denoted by x1, x2, . . . , xn, each
event occurring in the source is described by the random variable X equal to each of
the alphabet symbols, say xi , with probability:

pi = Pr (X = xi), i = 1, 2, . . . , n,

with, of course,
n∑

i=1

pi = 1.

This probability distribution does not depend on previous symbol choices since they
are assumed to be mutually independent, neither on time since the source is assumed
to be stationary. It thus completely describes the source. The set of values that X can
assume, which is here the source alphabet, is refered to as its sample space.

The information quantity associated in the average with each symbol generated
by this source is the mean (or expectation, denoted by E[·]) of the proper information
of the events X = xi , i.e.,

H (X) = E[h(X)] =
n∑

i=1

pi log (1/pi) = −
n∑

i=1

pi log (pi), (4.10)
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which is referred to as the entropy of the source (or of X, or of its probability
distribution). This word comes from the similarity, at least formal, of this quantity
with the expression of thermodynamic entropy given by statistical mechanics. More
precisely, this expression defines the entropy per symbol; one may also define an
entropy rate (or entropy per second) H ′ by multiplying the entropy per symbol by
the (average) frequency at which symbols are generated by the source.

For instance, the entropy of a random binary variable which equals 1 with
probability p and thus 0 with probability 1 − p, expressed in binary units equals:

H2(p) = H2(1 − p)
�=

{ −p log2 (p) − (1 − p) log2 (1 − p), 0 < p < 1,
0, p = 0 or p = 1.

(4.11)

This function is symmetric with respect to p = 1/2, where it achieves its maximum
equal to 1. It is represented in terms of p in Fig. 4.4 below.

We may yet make the following two remarks.

1. The entropy function Eq. (4.11) achieves its maximum for p = 1/2, i.e., when the
two possible events are equally probable. This may look at first sight contradictory
with the fact that, according to Eq. (4.4), an event brings the more information, the
more it is improbable. There is actually no contradiction since the information
quantity − log [Pr (x)] brought by one of the possible events is multiplied by
Pr(x) when the mean is computed. If Pr(x) approaches 0, Pr(x) log [ Pr (x)] itself
approaches 0 and the contribution to the entropy of an event x of very small
probability is small, although the information quantity produced by this event is
large when it occurs.

2. Although the notation of Eq. (4.4) seems to define h(x) as a function of x, it
does not actually depend on the value assumed by x but on the probability which
is associated with its occurrence. Thus, writing H (X) as we did, for instance,
is an abuse of notation: the random variable X is not truly an argument. This
notation is just used in order to identify the probability distribution of which
H is the entropy. In the discrete finite case, any transformation which merely
permutes the probabilities associated with the values X may assume leaves H

unchanged, as well as the substitution of symbols for others provided that the
set of associated probabilities is saved. If there is a need to make explicit the
dependency of the entropy (4.10) in terms of probabilities p1, p2, . . . , pn, we use
the notation H (p1, p2, . . . , pn) where the probabilities are now true arguments
of the function. This remark applies as well to all the quantitative measures of
information to be contemplated.

Let us now consider two random variables X and Y taking their values in two finite
sample spaces {x1, x2, . . . , xn} and {y1, y2, . . . , ym}. Applied to the elements (xi , yj )
of the set of all their pairs (also referred to as their Cartesian product), the definition
of entropy leads to the joint entropy, which is the mean of (4.5):

H (X, Y ) = E[h(X, Y )] = −
n∑

i=1

m∑

j=1

Pr (xi , yj ) log [ Pr (xi , yj )]. (4.12)
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Fig. 4.4 Binary entropy function H2(p)

Analogously, one may define conditional entropies; for instance, taking the mean of
(4.6) results in:

H (X|Y ) = E[h(X|Y )] = −
n∑

i=1

m∑

j=1

Pr (xi , yj ) log [ Pr (xi |yj )]. (4.13)

Notice that, at variance with the previous entropy expressions, the probability
which factors the logarithm is different from that in its argument: the mean is
still effected with respect to the Cartesian product of the variables X and Y so
the coefficient of the logarithm is the joint probability Pr (xi , yj ) while the argument
of the logarithm is a conditional one, i.e., Pr (xi |yj ) = Pr (xi , yj )/ Pr (yj ), where
Pr (yj ) = ∑n

i=1 Pr (xi , yj ) is the marginal probability of yj .
This definition of entropy can be shown to be the only continuous function of its

arguments (i.e., the probabilities {pi}) which satisfies a system of axioms accounting
for the expected properties of an average information measure. Khinchin used as
axioms the following three properties (Khinchin 1957):

1. For n given and
∑n

i=1 pi = 1, the function H (p1, p2, . . . , pn) is maximum for
pi = 1/n for any value of i (a property of the entropy to be stated in Sect. 4.2.4).

2. H (X, Y ) = H (X) + H (Y |X) (equality (4.21), below).
3. H (p1, p2, . . . , pn, 0) = H (p1, p2, . . . , pn), i.e., appending an (n+1)-th event of

probability 0 to a set of n possible events leaves the entropy unchanged.

Other systems of axioms were introduced, especially that of Fadeev which may be
considered as “minimum” (Roubine 1970):
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1. H (p1, p2, . . . , pn) is a symmetric function of its variables p1, p2, . . . , pn;
2. H (p, 1 − p) is a continuous function of p in the interval [0,1];

3. H (p′
1, p′′

1 , p2, . . . , pn) = H (p1, p2, . . . , pn) +p1H ( p′
1

p1
, p′′

1
p1

), with p′
1 +p′′

1 = p1.

One readily checks that the equality set as axiom 3 is a direct consequence of the
definition (4.10) of entropy.

We already stated that we do not deal here with the information measure associ-
ated with a continuous random variable X, say of probability density function pX(x),
meaning that the probability that X belongs to the infinitesimal interval [x, x + dx]
equals pX(x)dx. Indeed, replacing the summation by an integral in the entropy
expression (4.10) is impossible because the differential dx would appear in the ar-
gument of the logarithm. Instead, one formally defines the ‘differential entropy’ of
X as

Hd(X)
�= −

∫

pX(x) log [pX(x)]dx

which has some of the properties expected from an entropy but not all. We actually
do not need this quantity in what follows so we do not develop this topic.

When a continuous random variable is known through a physical measurement,
the difference between two measured values is meaningless if it is less than some
positive quantity ε which measures the measurement uncertainty. It is then possible
to define its ε-entropy (see Sect. 5.2.4), which has the same properties as the entropy
of a discrete random variable.

Mutual information Another very important quantity, now associated with a pair
of random variables, is the mean mutual information deriving from (4.9) by taking
its mean, i.e.:

I (X; Y ) = E[i(X; Y )] =
n∑

i=1

m∑

j=1

Pr (xi , yj ) log

[
Pr (xi , yj )

Pr (xi) Pr (yj )

]

, (4.14)

with Pr (xi) = ∑m
j=1 Pr (xi , yj ) and Pr (yj ) = ∑n

i=1 Pr (xi , yj ).
Contrary to the entropy, extending the mean mutual information to continuous

random variables X and Y , or to the important case where X is discrete but Y is
continuous because the channel noise is continuous, is straightforward. Indeed, the
same differentials appear in both the numerator and denominator in the argument of
the logarithm in Eq. (4.14) so they are eliminated.

The mean mutual information is at least as important as the entropy in the com-
munication field. It is possible, analogously, to give an axiomatic definition of it and
to show its uniqueness. Once the mean mutual information has been introduced, the
entropy may be derived from it since:

I (X; X) = H (X)

and more generally, from (4.25):

I (X; Y ) = H (X) if H (X|Y ) = 0,

i.e., if the occurrence of Y implies with certainty that of X.
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We just defined quantities intended to measure the mean information: the entropy
which measures the average information quantity associated with a discrete random
variable (or with a discrete stationary source where successively transmitted symbols
are independent, which is thus completely described by such a random variable), and
the mean mutual information which measures the average quantity of information
which is provided by one of the variables of a pair as regards the other one. We now
examine their main mathematical properties and their relations to each other.

4.2.4 Properties of the Entropy and of the Mean Mutual
Information

The reader unfamiliar with mathematics may jump over the proofs given in this
section, but should accept its conclusions.

Positiveness of entropy The entropy is obviously non-negative, i.e.:

H (p1, p2, . . . , pn) ≥ 0 ;

it is zero if, and only if, one of the probabilities in its argument equals 1 (so the other
ones equal 0). Then, one of the n events occurs with certainty so its outcome brings
no information.

Maximum entropy H (p1, p2, . . . , pn) reaches a maximum, for n fixed, when
pi = 1/n for any i. This property is easily shown to result from the convexity of
the logarithmic function (i.e., the curve which represents it is below its tangent at
any of its points), thanks to the Gibbs inequality. Given two probability distributions
over the same finite set, say (p1, p2, . . . , pn) and (q1, q2, . . . , qn), with

∑n
i=1 pi =∑n

i=1 qi = 1, Gibbs inequality reads:

n∑

i=1

pi log (qi/pi) ≤ 0, (4.15)

with equality if, and only if, pi = qi , hence pi = 1/n, for any i.

Convexity of entropy Replacing p1, p2, . . . , pn by averages

qi =
n∑

j=1

aijpj , aij ≥ 0, (4.16)

with

n∑

j=1

aij = 1, (4.17)
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for any value of i, and

n∑

i=1

aij = 1, (4.18)

for any value of j , results in increasing entropy, i.e.:

H (q1, q2, . . . , qn) ≥ H (p1, p2, . . . , pn). (4.19)

In other words, H (p1, p2, . . . , pn) = H (p) is a convex function1 ∩ of its arguments.

Let us consider the function f (x)
�= −x log (x). Then H (p1, p2, . . . , pn) =∑

i f (pi). The convexity ∩ of f results, for coefficients aij satisfying (4.17), in:

f

⎛

⎝
n∑

j=1

aijpj

⎞

⎠ ≥
n∑

j=1

aijf (pj ), i = 1, 2, . . . , n ; (4.20)

thus, summing with respect to i:

n∑

i=1

f

⎛

⎝
n∑

j=1

aijpj

⎞

⎠ ≥
n∑

i=1

n∑

j=1

aijf (pj ) =
n∑

j=1

f (pj )
n∑

i=1

aij ,

hence, taking (4.16) and (4.18) into account:

n∑

i=1

f (qi) ≥
n∑

j=1

f (pj ),

an inequality equivalent to (4.19).

Joint and conditional entropies of two variables Let us now consider two random
variables X and Y . We already defined their joint entropy, denoted by H (X, Y ), by
Eq. (4.12). It directly results from this definifion and from Bayes’ rule (4.7) (see 4.8)
that:

H (X, Y ) = H (X) + H (Y |X) = H (Y ) + H (X|Y ). (4.21)

The information quantity jointly brought by X and Y is thus larger than (or equal to)
the one brought by X or Y separately, since the entropy is essentially non-negative.
For the same reason:

H (X, Y ) ≥ H (X) or H (Y ). (4.22)

1 Such a function is generally referred to as ‘concave’ in the mathematical literature. We prefer
using the single word ‘convex’, the shape of its representative curve being indicated by ∩ or ∪.
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As regards the conditional entropy, let us notice that

H (X|Y ) ≤ H (X), (4.23)

with equality if, and only if, X and Y are independent.
In effect, inequality (4.20) expressing the convexity ∩ of the function f (x) =

−x log (x) results in:

f

[
∑

i

Pr (xj |yi) Pr (yi)

]

≥
∑

i

Pr (yi)f [Pr (xj |yi)],

−
∑

i

Pr (xj |yi) Pr (yi) log

[
∑

i

Pr (xj |yi) Pr (yi)

]

≥

−
∑

i

Pr (xj |yi) Pr (yi) log [ Pr (xj |yi)],

− Pr (xj ) log [Pr (xj )] ≥ −
∑

i

Pr (xj , yi) log [ Pr (xj |yi)]

and, after summing with respect to j :

H (X) ≥ H (X|Y ),

an inequality equivalent to (4.23).
Thus, the realization of a random variable which conditions another one can but

decrease the information quantity brought by the latter.
An immediate consequence of (4.23), taking account of (4.19), is the double

inequality:

H (X, Y ) ≤ H (X) + H (Y ) ≤ 2 H (X, Y ); (4.24)

the second inequality merely results from (4.21) and of the positiveness of entropy.

Mean mutual information of two variables As regards the mean mutual
information, its very definition results in:

I (X; Y ) = H (X) − H (X|Y ) = H (Y ) − H (Y |X), (4.25)

I (X; Y ) = H (X) + H (Y ) − H (X, Y ). (4.26)

Then, (4.23) shows that I (X; Y ) is positive or zero; it is zero if, and only if, the two
variables X and Y are independent. Interpreting X as the input symbol of a noisy
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channel and Y as its output, one may comment the double equality (4.25) as follows.
The mean mutual information equals:

the transmitted information minus the indeterminacy as regards the transmitted symbol which
remains when the received symbol is known;
symmetrically, the received information minus the indeterminacy as regards the received
symbol which remains when the transmitted symbol is known.

The mean mutual information is convex ∩ under conditions met in most practical
situations.

4.2.5 Information Rates; Extension of a Source

The quantities introduced above in order to measure information have been defined
per symbol: that generated by the source as regards the entropy, the pair of input and
output symbols of a channel as regards mutual information. One should then precisely
indicate the points in Shannon’s scheme where these symbols are considered, i.e.,
well define the borders between the blocks.

It is uncecessary to provide such precisions when the source generates its symbols
at a constant average rate (the symbol choices may be exactly periodic or effected at
a constant average frequency) and if the remainder of the communication link works
‘in real time’, i.e., at the same pace as the source. In this case, it suffices to consider
information rates with respect to time: the entropy or mutual information per second,
product of the entropy or mutual information per symbol by the frequency (possibly
the average frequency) of occurrence of these symbols at a given point. Then, the
same information rate may correspond to equivalent messages with different symbol
frequencies (as resulting for instance from a change of the alphabet size). An often
useful change of alphabet consists of replacing a source by its k-th extension. Given
a source generating a message the symbols of which belong to the α-ary alphabet, its
k-th extension Sk consists of grouping its symbols by successive blocks of k, each
block being interpreted as a symbol of the αk-ary alphabet. The frequency at which
these symbols are generated by Sk is the product by 1/k of that of source S. For
instance, if a binary source generates the message

000 100 101 101 011 100 110 . . .

its third extension generates the message

0 4 5 5 3 4 6 . . . ,

when the symbols now belong to the 8-element alphabet and are represented here
by decimal digits. The k-th extension Sk of a source S is not a different source, but
another means for describing it.
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4.2.6 Cross-Entropy

We now introduce a quantity to be referred to as cross-entropy from which the main
two measures of average information, namely, the entropy and the mutual informa-
tion, can be derived. This quantity measures in a sense the distance between two
probability distributions and possesses interesting properties. It has been introduced
by Kullback and Leibler (Kullback 1959). Its importance comes from Kullback prin-
ciple, to be stated in the sequel, as well as from its axiomatic proof given by Shore
and Johnson (Shore and Johnson 1980). The reader unfamiliar with mathematics may
find this section rather difficult and may jump over it. It has been included because
of its importance in information theory, but it is of little direct use in the sequel.

Definition and main properties of cross-entropy Let us consider two probability
distributions on a same finite sample space of n elements, namely, {pi}, denoted by
p, and {qi}, denoted by q. By definition,

n∑

i=1

pi =
n∑

i=1

qi = 1.

It is moreover assumed that none of the probabilities {qi} is zero. The Gibbs
inequality (4.15) implies that the quantity

H (p‖q)
�=

n∑

i=1

pi log

(
pi

qi

)

(4.27)

is positive or zero. It is zero if, and only if, pi = qi for any i, hence p = q. The loga-
rithmic base is arbitrary, for example 2. The quantity H (p‖q) is useful for measuring
the degree of proximity between the two distributions p and q. Kullback named it di-
rected divergence (Kullback 1959) and it is often referred to as the ‘Kullback-Leibler
divergence’. It bears also the names of cross-entropy, to be used here, and relative
entropy in the book by (Cover and Thomas 1991). We shall refer here to H (p‖q) as
‘cross-entropy’ of p with respect to q. As regards its notation, we adopted that used
by Cover and Thomas, where the arguments are separated by the sign ‖. Separating
arguments by a comma generally refers to the variable jointly associated with its two
arguments, which is not relevant here. On the other hand, the arguments X and Y

of the mutual information I (X; Y ) are usually separated by a semi-colon in order to
indicate that it depends on two arguments and not on the variable jointly associated
with its two arguments. Mutual information is symmetrical with respect to X and Y

since I (X; Y ) = I (Y ; X). On the contrary, if one swaps p and q in Eq. (4.27), one
formally obtains

H (q‖p) =
n∑

i=1

qi log

(
qi

pi

)

,

which now is meaningful only if none of the probabilities {pi} is zero. If this
condition is met, one generally has:
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H (q‖p) �= H (p‖q).

Using the special separation sign ‖ is intended to recall the asymmetry of cross-
entropy with respect to its arguments.

The additivity of cross-entropy with respect to the product of distributions imme-
diately follows from definition (4.27). Let {pi}, denoted by p, and {p′

i}, denoted by
p′, be two probability distributions over a same finite sample space of n elements,
assumed to be independent. Let {qi}, denoted by q, and {q ′

i}, denoted by q′, be two
other independent probability distributions over the same finite set. One denotes by
P and Q the distributions associated with the Cartesian product of the sample spaces
endowed with the product of the corresponding probabilities, i.e., the n2 components
of P, for example, are of the form

Pk = pip
′
j , k = n(j − 1) + i,

where i, j ∈ {1, 2, . . . , n}. If no component of Q is zero, the cross-entropy of P
with respect to Q is the sum of the cross-entropies of p with respect to q and of p′
with respect to q′:

H (P‖Q) = H (p‖q) + H (p′‖q′).

The cross-entropy has a particularly simple expression when q is equal in Eq. (4.27)
to the uniform distribution u, such that ui = 1/n for each value of i, namely:

H (p‖u) = log (n) − H (p), (4.28)

where H (p) is the entropy associated with the probability distribution p, as defined
in (4.10). But log (n) is the maximum entropy associated with n events. The cross-
entropy of a probability distribution with respect to the uniform distribution thus
measures the difference between the maximum entropy and that which corresponds
to p, i.e., the redundancy.

We now consider two non-independent random variables X and Y . We take for

p the joint distribution of X and Y (p
�= {Pr(X, Y )}) and for q the product of the

marginal distributions of X and of Y (q
�= {Pr(X) Pr (Y )}), which would be their

joint distribution if, and only if, X and Y were independent. The cross-entropy of p
with respect to q is nothing but the mean mutual information as defined in Eq. (4.14):
H (p‖q) = I (X; Y ).

It is thus possible to first define the cross-entropy as (4.27), and then derive from
it the main two mean information measures introduced in Sect. 4.2.2: the entropy as
defined by (4.28) and the mean mutual information as we just have seen it.

Contrary to the entropy but similarly to the mutual information, the cross-entropy
can easily be extended to the continuous case. The distributions p and q appear in
argument of the logarithm in formula (4.27) which defines cross-entropy in terms
of the ratios pi/qi , which enables extending its definition to the continuous case,
provided only that distributions p and q possess probability density functions p(x)
and q(x). Assuming their existence, the cross-entropy of p and q is expressed as:
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H (p‖q)
�=

∫ +∞

−∞
p(x) log

[
p(x)

q(x)

]

dx (4.29)

and the inequality H (p‖q) ≥ 0 remains true. Equality (4.29) can even be extended
to more general distributions.

The previous statements remain valid for cross-entropy as extended to the con-
tinuous case, except that now q(x) should be non-zero almost everywhere. One has
H (p‖q) = 0 if, and only if, p(x) = q(x) almost everywhere, i.e., except maybe on
a set of measure zero.

Kullback principle The positiveness of cross-entropy is for the moment the sole
(and meager) reason which justifies its use as a proximity measure between two
distributions p and q. Besides the fact it is dissymmetric in p and q, this quantity does
not even obey the triangular inequality, which seems to poorly qualify it as a distance
measure. The importance of cross-entropy as a proximity measure between two
distributions, in spite of these reservations, actually relies on the Kullback principle
(Kullback 1959) and on the axiomatic proof of it given by Shore and Johnson (Shore
and Johnson 1980; Johnson and Shore 1983).

Let p be a probability distribution on the sample space of a certain random variable,
referred to as a priori. Let us assume that this quantity is also submitted to constraints
ignored in the expression of p, in the form of either some linear combinations of
probabilities in p being equated to zero (i.e., equating to zero the mathematical
expectation of some random variable defined in terms of p), or of an inequality
concerning such a combination, specifying for instance that it should be non-negative.
One intends to determine the probability distribution on the same sample space, to be
referred to as a posteriori, which takes account of both the distribution p and these
constraints. The answer to this question is given by Kullback principle:

among all probability distributions q compatible with the constraints, the best a posteriori
distribution q∗ is the one which minimizes the cross-entropy H (q‖p).

In the discrete case, when the a priori distribution is uniform (or if, in the absence
of any a priori data, it is assumed to be so), Kullback’s principle reduces, according
to relation (4.28), to that of maximum entropy previously stated by (Jaynes 1957).

In order to prove Kullback’s principle, Shore and Johnson use simple axioms
which aim at logical consistency for determining q∗. They actually first define this
quantity in the continuous case i.e., using (4.29), and put as axioms the following
statements, written here in informal terms:

a) the result is unique;
b) it is invariant by scale change;
c) it is equivalent to take account of independent informations on independent quantities and

to consider them together in the form of a joint distribution;
d) considering a distribution over a complete set of events has the same result as decomposing

it into successively taken disjoint subsets. For each subset, one then replaces the initial
probability distribution by the distribution conditioned on the membership to this subset.

In the discrete case, Shore and Johnson replace axiom b) by
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b’) the result is invariant by permutation;

and they moreover append to the set of axioms the following one (Shore and
Johnson 1981):

e) taking into account of a constraint already satisfied by the a priori distribution leads to an
a posteriori distribution identical to the a priori distribution.

The general idea which led to the choice of these axioms was to ensure the identity
of the results when there exist several ways for obtaining them. In the case of axiom
d), for example, one may either consider the complete set of events, or split it in
subsets.

Many other proximity measures between probability distributions have been pro-
posed, but minimized cross-entropy is the only one which satisfies the set of all the
axioms written above and it is why it is important.

One finds applications of cross-entropy in all cases where some result may be
obtained as a consequence of the Gibbs inequality (4.15). In source coding (to be
considered in the next section), for instance, let us consider p as the probability of

the n messages that a source can generate and q
�= {α−ni }, where α is the source

alphabet size, ni is the length of the word associated by some source encoding to the
i-th message, the Kraft inequality

∑n
i=1 α−ni = 1 (4.32) being moreover satisfied

with equality (see Sect. 4.3.2). The probability distribution q is submitted to the
constraint that each of the numbers ni is an integer. Then,

H (p‖q) = n − Hα(p)

where n
�= ∑n

i=1 pini is the average length of the codewords per source message
and where Hα(p) is its entropy, expressed using logarithms to the base α. Hence,
H (p‖q) measures here the cross-entropy between the average length obtained after
encoding and its lower limit as assigned by the fundamental theorem of source
coding. In particular, this cross-entropy will be strictly positive even for the coding
system which makes it minimum i.e., the best possible for a given value of n, if
probabilities pi are not all of the form α−ni with ni integer. (It is known, as shown
in Sect. 4.3.4, that it is possible to diminish it by performing the optimized encoding
on the messages of the k-th extension of the original source, instead of the original
messages of this source.)

Many other examples of applying Kullback’s principle and of cross-entropy may
be quoted in other branches of information theory, but also in the fields of signal
processing and physics. In the latter case, Kullback’s principle generally reduces to
the maximum entropy principle of Jaynes. Kullback’s principle has also been applied
to the optimal decoding of channel codes (Moher 1993).

Properties of minimized cross-entropy We now assume that the distribution q
results from an a priori distribution p and of a certain set I of constraints by applying
Kullback’s principle. The cross-entropy H (q‖p) is then, by definition, minimum for
the distribution q compatible with the constraints I.
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This cross-entropy then verifies the inverse triangular inequality, namely:

H (q‖p) ≥ H (q‖r) + H (r‖p), (4.30)

where r is a probability distribution which minimizes the cross-entropy for a partial
set of constraints J ⊂ I , r being then used as the a priori probability distribution for
determining by the same way the probability distribution q now taking into account
the set I − J of the remaining constraints. Still better, if the constraints are in finite
number and are all expressed by equalities, then (4.30) becomes an equality. This
triangular equality fully justifies using the minimized cross-entropy as a proximity
measure between a priori and a posteriori distributions. One will find in (Shore and
Johnson 1981) a more precise and complete discussion of the properties of minimized
cross-entropy.

4.2.7 Comments on the Measurement of Information

As it is used in the theory, the word ‘information’ has a technical meaning which
is very restrictive with respect to the usual one. In order to define a quantitative
measure of information, we just relied on an initial remark, without going further. We
actually defined the information quantity as a statistical measure of unexpectedness,
itself likened to improbability. The entropy adequately measures the average time
or cost for communicating messages generated by a source. But the meaning of a
message, its veracity, its documentary, affective or aesthetic value, its usefulness for
the destination, the consequences it may have if it consists of a command, all notions
relevant to semantics, are by hypothesis foreign to information theory. Confusing
information in its technical meaning and information in its usual sense should be
avoided. Extending information theory out of its technical validity domain (which is
also the place of its origin), where excluding semantic was undoubtedly a necessary
condition for elaborating the theory, demands a special attention for avoiding this
confusion.

This situation is not very different from that encountered much earlier with physi-
cal quantities. For instance, any material object has many attributes like form, colour,
texture, internal structure . . . If one has to describe the movement of this object when
driven by a mechanical force, however, a single quantity is relevant: its mass. Simi-
larly, among the many attributes of a message, a single one is relevant as far as literal
communication is concerned: the entropy of the source which generates it.

It is often asserted that the entropy measures uncertainty or disorder, and it is
actually so that physics interprets it. As used in information theory, however, it
actually measures a resolved uncertainty: the information associated with an event
is defined in terms of its probability distribution before it occurs. That the entropy of
information theory measures a resolved uncertainty also appears in the expression
(4.25) of the mean mutual information I (X, Y ). If we interpret X as the ‘source’
event i.e., the one the occurrence of which brings information, and Y as its perturbed
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observation, then (4.25) shows that the uncertainty as regards X is only partially
resolved, since the entropy of X is diminished by the conditional entropy H (X|Y )
which measures the residual uncertainty. Since the entropy of information theory
measures the resolution of an uncertainty, the word negentropy, i.e., negative entropy,
as used by (Schrödinger 1943) and (Brillouin 1956), would be more appropriate for
referring to it. Thus the famous formula engraved on Boltzmann’s tombstone in
Vienna which expresses the thermodynamic entropy Sth as

Sth = kB ln (W ),

where kB is referred to as Boltzmann constant, measures the indeterminacy asso-
ciated with W equally probable configurations which are indistinguishable at the
macroscopic scale although distinct at the microscopic level. We further examine the
relationship of thermodynamic entropy with information in Sect. 6.3.1.

Even if one is interested as at the beginning of this section in a single event, the
definition (4.4) of information quantity refers to a set of objects endowed with prob-
abilities. Stating the obvious, this implies that the elements of this set are defined and
that probabilities are assigned to them. Defining the elements implies a preliminary
agreement of the source and the destination (an indissociable pair for the theory) as
regards the events assumed as symbols (and more generally, as regards their meaning,
but we ignore semantics). Assigning probabilities to future events is often impos-
sible, but in the form of more or less arbitrary forecasts. The only case when it is
meaningful is that of a stationary and ergodic situation, since then observing the
frequency of occurrence of the past events enables reliably assessing probabilities
to the events to come. But receiving a message results in some modification of the
destination: it is quite obvious when it is a command for destroying a rocket, much
less obvious in many cases, but of what use would be to communicate a message
unless there is some lasting modification, e.g., its recording, at the receiving end?
If one tries to measure information in terms of the probability estimates which the
receiver can make, one has to take account of the destination modification due to its
receiving the previously transmitted messages. This is a learning process, which is
typically non-stationary.

At a very fundamental level, information is involved in the following vicious
circle. I have a dice and, in the absence of further information, I assign to each of its
6 faces the same probability 1/6. If I actually know the position of the gravity center
of the dice, thus exploiting a complementary information, I am able to revise the
probability estimates associated with the faces: an information measure thus depends
here on . . . a preliminary information. Moreover the event I refer to, namely, the
outcome of one of the faces, should be identifiable. In other words, each face of
a dice should bear an . . . information in order to enable distinguishing it from the
others. This is not difficult at the macroscopic level, but it is not so at the microscopic
one. Can we play dice with an atom or a molecule?

Does information exist prior to probabilities? We may deem that the algorith-
mic information theory to be briefly dealt with in Sect. 6.1, which is not based on
probabilities, will eventually result in founding the theory of probabilities.
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4.3 Source Coding

Source coding will not be directly useful to us for applying information theory
to sciences of life. However, we devote this section to it for the sake of com-
pleteness, deeming that it is absolutely necessary for understanding information.
Moreover, briefly dealing with source coding will be helpful to shed some light on
the relationship between information and semantics. For instance, describing the
Huffman algorithm in Sect. 4.3.4 will provide the opportunity to meet the concept of
decipherable code, which is of fundamental importance as regards this relationship.

The aim of source coding, as already said, is to replace some sequence generated
by a source with a shorter but entirely equivalent one. In other words, it is intended
to remove its redundancy. We first introduce source models and discuss some of
the properties they should possess in order to be tractable. Then, we shortly state
the fundamental theorem of source coding with the help of the concept of source
extension. We more lengthily describe the Huffman algorithm, an optimum source
coding algorithm, which will give us the opportunity of introducing the representation
of a binary sequence by a tree and of defining ‘irreducible codes’ as an example of
decipherable codes. It will be shown that they obey the Kraft inequality which is of
general relevance as satisfied by any decipherable code.

4.3.1 Source Models

A written text will be used as an example of source. This source generates for a reader
a sequence of signs which belong to the Latin alphabet, for instance, with a few
more auxiliary signs like the space used in order to separate the words, punctuation
signs, numerals. The letters themselves can take different forms, for instance capitals
or italics. All these signs belong to some finite set which we may refer to as the
‘extended alphabet’ and its elements as ‘symbols’. Words rather than separate letters
have been chosen from some repertoire, the lexicon of the language which is used.
This repertoire is very large and the grammatical rules according to which words are
assembled are complicated. As a result, a thorough probabilistic description of such
a source is impossible, and only models resulting from drastic simplifications can be
contemplated. Moreover, some properties of the source models must be assumed so
as to make them simply tractable.

The main two properties assumed to this end are that the sources are stationary and
ergodic. ‘Stationary’means that the probabilities which describe the source operation
do not vary with time. ‘Ergodic’ means that observing the source output during a
long enough time interval suffices to estimate its statistical properties; this implies in
particular that the initial state of the source has no influence on its present operation, or
that this influence can be ignored. Ergodicity and stationarity are unrelated properties,
although often associated.

Now, assuming a source model to be stationary and ergodic, an important pa-
rameter of it is its memory, informally defined here as the number of consecutive
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symbols which are mutually dependent. The simplest case, of course, is that of a
memoryless source where each symbol is independent of others. Then this source
model is entirely defined by the probability distribution of its symbol outcomes. For
instance, the average frequency distribution of the letters in, say, English texts has
been measured, so using this frequency distribution as the probability distribution
of the source symbols provides a statistical model of a text written in this language.
This very simple model is also very unrealistic since in almost all sources of any
practical or theoretical interest the successively transmitted symbols are more or
less mutually dependent, hence have memory according to our definition. A more
realistic model, although still widely simplified with respect to most actual situa-
tions, is that of a Markov chain. Markov was a linguist who introduced the chains
which bear his name for modelling languages (Roubine 1970). A Markov chain is
some system which can assume n distinct states. Changes of state regularly occur
(e.g., periodically) at random between some of them. The source is described by
the probabilities of the transition from each of its states to other ones, or transition
probabilities. In a stationary Markov chain, the transition probabilities are constant.
The specific property of a Markov chain is that the dependency with respect to the
whole past is limited to that on the actual state, regardless of the succession of past
states.

An n-state Markov chain is conveniently represented by a diagram where n points
correspond to the states. The transitions from one of the states, say si , to another one,
say sj , is represented by an arrow between the corresponding points, labelled with
the corresponding transition probability, denoted by pij . Fig. 4.5 represents a very
simple example of such a diagram, for a 2-state Markov chain,

In order to model a source, we assume that each transition in the chain entails
the transmission of some definite symbol, to be identified in this very simple case
with the state which is assumed after this transition occurred. Otherwise, whenever
a transition occurs, some symbol similarly indicating the new state is transmitted.
The chain reaches a steady-state operation if the probabilities of the states tend to
constant values. If it occurs, and furthermore if these probabilities do not depend on
the initial conditions, the chain is said to be regular or completely ergodic. Since they
do not depend on time, the constant values eventually assumed by the probabilities of
the states are referred to as ‘stationary’. A sufficient condition for a Markov chain to
be completely ergodic is that all states actually communicate in the sense that there
exists a path without any zero-probability branch between any state and any other
one, possibly through other intermediate states. In other words, all states should
communicate.
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Defining the entropy of a source A stationary memoryless source is completely
described by the probability distribution of the symbols it transmits. The entropy of
this distribution defines that of the source according to Eq. (4.10). For a stationary
source with memory, its entropy H is defined as the limit, for k approaching infinity:

H
�= lim

k→∞ −1

k

∑

s

p(s) log [p(s)], (4.31)

where s denotes a block of length k, p(s) its probability, the summation being effected
for all blocks of length k that the source can generate. In other words, it is the limit of
the entropy of the k-th extension of the original source, divided by k. This definition
is meaningful only if the source has a finite memory, i.e., if the dependency between
two symbols k symbols apart in the transmitted sequence tends to 0 as k appraoches
infinity.

In the case of an n-state Markov source, one easily shows that this entropy is
equal to

H = −
n∑

i=1

πi

n∑

j=1

pij log (pij ),

where pij denotes the probability of the transition from state i to state j and πi

denotes the stationary probability of state i (which can itself be computed in terms
of the transition probabilities).

4.3.2 Representation of a Code by a Tree, Kraft Inequality

We now consider how a set of words, i.e., a code, can be represented by a tree.
We saw in Sect. 2.4.3, especially in the example of an identification number, that
a sequence must often be separated into subsequences, referred to here as a words,
having each its own semantic interpretation. We need also segmenting into words a
sequence intended to represent the output of a source, especially if it results from
source coding, i.e., aimed at representing this output by a shorter sequence. An a
priori necessary property of such a code is that a sequence made of its words be
decipherable, meaning that it can unambiguously be separated into its constituent
words regardless of their order in the sequence. We first assume that a codeword can
moreover be immediately recognized as such, i.e., as soon as it is received. A code
having this property will be referred to as instantaneous or irreducible. We restrict
ourselves here to a code using the binary alphabet, but the extension to an alphabet
of arbitrary size is straightforward.

Let us first consider a k-bit word. It may be interpreted as uniquely specifying
one of the 2k possible paths in a ‘complete’ binary tree of length k. In Fig. 4.6, the
ascending branches conventionally represent the bit ‘0’ and the descending ones the
bit ‘1’. A word is represented by a path starting from the root of the tree.

We obtain an instantaneous code if we impose to its words the prefix condition,
namely, that no one is allowed to be a prefix of another one. This condition implies
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Fig. 4.6 Complete binary tree of length k = 4 and, after deleting the content of the dotted boxes,
tree representing an instantaneous code. Any word of length less than or equal to 4 is represented by
a path in the tree starting from its root. When a word is chosen to belong to an instantaneous code
(here a 5-word set), the prefix condition forbids using the branches of the complete tree beyond
the extremity of its representative path so the partial trees contained in the dotted boxes of the
figure must be deleted. Black points represent the root and the terminal extremities, or leaves, of
the original complete tree on the one hand, and those of the incomplete tree obtained after deletion
(labelled from a to e), on the other hand. The number of leaves of the complete tree which are
deleted to satisfy the prefix condition cannot exceed their total number, 2k = 16, which results in
the Kraft inequality (here an equality)

that once a word is chosen as belonging to the code, the path which represents it
in the tree is not further prolonged. The branches beyond this node have thus to be
deleted so it becomes a terminal node of the tree which represents the code. Then, if
the length of this path is ki , 2k−ki terminal nodes of the complete tree are suppressed.
For a K-word code, with K < 2k (k now denoting the length of the longest path in
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the tree (see Fig. 4.6, which represents the longest codeword), we may count the total
number of terminal nodes of the complete tree which are suppressed (see Fig. 4.6)
and express that it must be less than or equal to the total number of these nodes,
namely, 2k , so we obtain the inequality

K∑

i=1

2k−ki ≤ 2k.

Dividing by 2k results in the Kraft inequality:

K∑

i=1

2−ki ≤ 1, (4.32)

where ki denotes the length of the path associated with the i-th word, with 1 ≤ ki ≤ k,
1 ≤ i < K .

Then the prefix condition enables unambiguously separating each word in an
information message made of several successive words and, moreover, to identify it
as soon as it is received. Other means than using a set of words satisfying the prefix
condition, such as using words of constant length (as the codons of the ‘genetic
code’ and ‘blocks’ in many technical communication means), or appending to the
alphabet a special character exclusively intended to separate the words (as the ‘space’
in the written human language, which must then be considered as an integral part of
the alphabet), also result in making a sequence of contiguous words decipherable.
Regardless of the means used to make a set of words decipherable, MacMillan has
shown that it satisfies the Kraft inequality (4.32).

4.3.3 Fundamental Theorem of Source Coding

Let H denote the entropy per symbol of a stationary, ergodic and finite-memory
source, expressed in shannons, i.e., using logarithms to the base 2. The output of
this source can be encoded into a decipherable binary sequence having an average
length of at least H bits per symbol of the given source, from which the original
source output can be exactly recovered. No shorter encoded sequences enable an
exact recovery.

By decipherable sequence, it is meant as above a sequence which can be segmented
into words, such that each of them can unambiguously be separated from the others
regardless of their order in the sequence. We assume here that the encoded sequence
is binary, but the extension of the statement of the theorem to an arbitrary alphabet
is straightforward. Then the logarithms used in order to express the entropy H of the
source should have as base the alphabet size of the encoded sequence.

For a sketchy proof of this theorem we first consider a memoryless source. Let α

denote the size of its alphabet, assuming for the moment α > 2, and n denote the
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shortest average length per source symbol of a decipherable encoded binary sequence
which encodes it, expressed in bits, namely:

n
�=

α∑

i=1

pini , (4.33)

where pi is the probability of occurrence of the i-th source symbol and ni the length

of the word which represents it, in bits. Let us define qi
�= 2−ni , i = 1, 2, . . . , α.

Being assumed decipherable, the code should satisfy the Kraft inequality (4.32),
namely,

∑α
i=1 2−ni ≤ 1. We choose the word lengths so that the equality obtains,

i.e.,
α∑

i=1

2−ni = 1

and this choice actually leads to the smallest possible lower bound on n. Then {qi} can
be dealt with as a probability distribution. We may thus apply the Gibbs inequality
(4.15) to {pi} and {qi}, which results in

α∑

i=1

pi log2

[
2−ni

pi

]

≤ 0.

Provisionally assume that the equality holds. This would mean that pi = 2−ni or,
equivalently, ni = − log2 (pi), for any i. There is no reason why the probabilities
{pi} should assume the form of 2 raised to some negative integer power, since they
are parameters of the given source. However, it is always possible to find α integers
{ni} such that

− log2 (pi) ≤ ni < − log2 (pi) + 1.

Multiplying by pi and summing with respect to i results in:

−
α∑

i=1

pi log2 (pi) ≤
α∑

i=1

pini < −
α∑

i=1

pi log2 (pi) +
α∑

i=1

pi.

Taking into account the definitions Eq. (4.10) of the entropy and Eq. (4.33) of the
average codeword length, and since

∑α
i=1 pi = 1 because {pi} is a probability

distribution, the following double inequality results:

H ≤ n < H + 1.

If the original source is replaced by its k-th extension, as already defined in Sec.
(4.2.5), its entropy per symbol becomes kH and the average length per symbol of
the original source becomes kn. The double inequality above still holds for the k-th
extension, namely:

kH ≤ kn < kH + 1.

Dividing by k shows that n can be made arbitrarily close to its lower bound H by
increasing the extension order k. The use of a large extension order k entails moreover
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Fig. 4.7 Trees representing sets of binary sequences. On the left, tree associated with the set of
all binary sequences of length 3. On the right, tree depicting a 4-word code obeying the prefix
condition, extracted from this set. The dots represent the nodes

that there is no need to assume that the initially given source is memoryless. It may
be of finite memory since the mutual dependence of the symbols of the initial source
is then taken into account within each of its k-symbol blocks.

4.3.4 Source Coding by the Huffman Algorithm

Let us first consider the problem of representing the successive symbols generated by
a stationary memoryless α-ary source Sα by a binary sequence as short as possible,
in a fully reversible way. We assume that α is larger than 2; for instance α = 4 will
provide a simple example. Let a, b, c, d denote the symbols of S4 and pa , pb, pc, pd

their respective probabilities. Of course, pa + pb + pc + pd = 1. We assume that
none of these probabilities is 0 (then 4 is the actual size of the source alphabet). We
intend to represent each of the source symbols by a binary word according to a one-
to-one correspondence, and we further demand that the codewords which represent
the source symbols satisfy the prefix condition already defined in Sect. 4.3.2 above.

The set of all binary sequences of length k = 3 has been represented as a binary
tree in the left part of Fig. 4.7, similar to the complete tree of Fig. 4.6 but drawn for
k = 3. Any branch bears a binary label according to some arbitrary convention, here
0 for branches leaning to the left and 1 for those leaning to the right. Then the paths
in the tree graphically represent all possible binary sequences of length k = 3. The
tree representing a 4-word code obeying the prefix condition, drawn on the right of
the same figure, is extracted from the tree at left by the same deletion process as in
Fig. 4.6. The source symbols are associated with each of the terminal nodes of this
tree. The word intended to represent one of these symbols is the sequence of binary
labels read along the path from the root to the corresponding terminal node. The
words of the code in the figure are thus 0, 10, 110 and 111.
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Fig. 4.8 Successive steps in the encoding by the Huffman algorithm of a quaternary memoryless
source having 0.1, 0.2, 0.3 and 0.4 as symbol probabilities. The nodes are labelled with their
probabilities

Let na , nb, nc and nd be the length of the words associated with the symbols a, b, c
and d, respectively. The average number of bits, or length, of the message which
results from this encoding is thus

n = pana + pbnb + pcnc + pdnd

and the code should be designed in order to minimize it. The Huffman algorithm is an
optimal means for designing the corresponding tree (Huffman 1952). It consists of
building node by node the binary tree which represents the code. The terminal nodes,
each being associated with one of the source symbols and affected with its probability,
are initially given. It is assumed that they are ranged in non-decreasing order of their
probabilities, i.e., such that 0 < pa ≤ pb ≤ pc ≤ pd < 1. The algorithm builds the
tree by creating new nodes as follows: it starts from the two terminal nodes having
the smallest probability (the leftmost two in the figure) and connects them to a new
node having as probability the sum of their probabilities. Then, a node connected to
the two nodes of lowest probability among the remaining ones is further introduced.
This process is continued until a node is given the probability 1: it is the root of the
tree. The codeword associated with a source symbol is then represented by the path
from the root to the terminal node which corresponds to this symbol.

Fig. 4.8 shows the successive steps of the Huffman encoding, assuming that the
source symbols have as respective probabilities pa = 0.1, pb = 0.2, pc = 0.3 and
pd = 0.4. The tree at right, obtained when the process is completed, is equivalent to
the tree at right in Fig. 4.7. The resulting average length is n = 0.1 × 3 + 0.2 × 3 +
0.3 × 2 + 0.4 × 1 = 1.9 bits, less than 2 bits as in the absence of source coding, but
larger than the entropy 1.8464 . . . Sh.

The tree constructed by means of the Huffman algorithm is optimal since when
a new node is introduced, hence when 1 is added to the length of two paths at each
step of the algorithm, it is the length of the most improbable two paths which is
incremented. However, this tree is optimal only for a given alphabet size α. The
given source can be described as well by its higher order extensions, as already
defined in Sect. 3.2.1 and 4.2.5, and the performance can be improved (the average
length after encoding can be diminished) by replacing the original α-ary source with
a higher extension k of it, of alphabet size αk . Exponentially increasing the number
of symbols of the alphabet, the use of a higher extension makes the number qi = 2−ni,
where ni denotes the length of the word associated with the i-th alphabet symbol,
better and better approximate its actual probability pi . Letting the extension order
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approach infinity results in the average length after encoding (per symbol of the
initial source) asymptotically approaching its theoretical lower limit according to
the fundamental theorem of source coding, namely, the source entropy expressed
using binary logarithms. There is no need then to assume that the initially given
source is memoryless. It can be of finite memory since the mutual dependence of the
symbols is then taken into account within each block of the initial source symbols
which defines a symbol of the extension, of increasing size. Our initial assumption
that the original source should have an alphabet of size α larger than 2 does not
prevent encoding a binary source by the Huffman algorithm, which then has just to
operate on an extension of this source.

Source coding ideally results in the information message which, according to the
fundamental theorem, cannot have a length less than the source entropy. However,
the source coding algorithms assume that the probabilities associated with the source
symbols are perfectly known. An exact statistical description of the source is thus
assumed to be known. Let us illustrate by an example the difficulty it may entail.
It may seem that the frequency of the letters of a language, at the scale of a book
(which contains some 50,000 letters), varies little from a book to another, and this
is most often true. It is well known that the most frequent letter, in English as well
as in French, is ‘e’. There exists however a book written in English where this letter
is never employed: “Gadsby”, a novel by E.V. Wright published in 1939. The same
literary tour de force was achieved in French by Georges Perec with his novel “La
Disparition” (1969). A source coding system based on the average frequency of the
letters in English or in French, operating on these books, would obviously give results
much worse than expected.

This problem may be solved by the use of algorithms referred to as ‘universal’,
which do not demand the preliminary knowledge of a statistical description of the
source, or of ‘adaptive’ algorithms which evolve in order to optimally fit the actual
source characteristics and are thus able to follow its possible variations. As an exam-
ple of adaptive source coding algorithm, Gallager noticed that the operation of the
Huffman algorithm results in sibling nodes (i.e., the extremities of branches originat-
ing in a same node) being neighbours in the list of nodes ranged by non-decreasing
probability order. He used this property to design an adaptive version of the Huff-
man algorithm, where the tree is modified so as to eventually restore the sibling node
property (using frequencies measured by the very operation of the algorithm instead
of probabilities). Then it reaches optimality if the initial symbol probabilities are
ill-known or even unknown, or restores optimality if the source symbol probabilities
vary (Gallager 1978).

The recourse to a high-order extension which is generally needed in order to obtain
good performance with the Huffman algorithm entails an exponentially increasing
complexity. Other source coding means, especially arithmetic coding, approach the
theoretical limit by less complex means (Rissanen 1976; Rissanen and Langdon 1979;
Guazzo 1980). An adaptive version of the Guazzo algorithm has been proposed by
us (Battail 1990). The Lempel-Ziv algorithm is still another asymptotically optimal
algorithm which consists of determining the most frequent groups of symbols and
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use them as symbols of a new alphabet, instead of the original one (Ziv and Lempel
1978).

Describing the Huffman algorithm has shown that it is necessary to segment the
encoded sequence into words, each intended to designate a symbol of the source
(often of an extension of the original source). The necessity of distinguishing the
words implies that the code must be decipherable. That a word refers to a source
symbol, i.e., to something foreign to the code, may be interpreted as its meaning,
just like the identification number given as an example in Sect. 2.4.3, a sequence
of decimal digits which has to be segmented into several words telling a number of
features which, taken together, uniquely characterize a person. The correspondence
between the words and these features is semantic in the usual meaning of the word.
In the case of source coding by the Huffman algorithm, however, the meaning of
a word is internal to the encoding process of a sequence. We meet here a kind of
‘internal semantics’ at the heart of information theory, which may be helpful to
better understand the relationship of information theory with semantics in its usual
meaning. We more closely examine this question in the next section.

4.3.5 Some Comments About Source Coding

On the relationship of information and semantics The Huffman source coding
algorithm described in Sect. 4.3.4 establishes a one-to-one correspondence between
the symbols of a non-binary source (often an extension of an original binary source,
as defined in Sect. 3.2.1) and the words of a binary code. How it works can be
described as the construction of a tree as that of Fig. 4.7 where the terminal nodes
correspond to the source symbols, any branch represents a bit and the successive
branches of a path from the root of the tree to a terminal node represent a codeword.
Let us further comment it.

We already noticed that the symbols transmitted by the source succeed to each
other in any order, so the words which represent them should be unambiguously
distinguished regardless of this order. The code should thus be decipherable, and
the Huffman algorithm fulfills this requirement by satisfying the prefix condition
which makes the code irreducible. We also noticed that the source symbol to which
a codeword refers may be interpreted as its meaning. The Huffman algorithm may
thus be thought of as defining semantic rules internal to the coding process. Thus,
although semantics has been a priori excluded, it nevertheless appears within a
classical topic of information theory. This remark will be helpful to better understand
the relationship of information theory with semantics in its usual meaning.

Source symbols are objects of communication engineering, but similarly associ-
ating binary words with outer objects, instead of source symbols, suffices to define a
semantic rule in its ordinary meaning. Besides objects of the physical world, words
can be associated with relations between such objects, hence to abstract entities as
well. The choice of the binary alphabet has been only a matter of convenience and



86 4 Information Theory as the Science of Literal Communication

binary words can be replaced by finite symbolic sequences using an arbitrary al-
phabet. Thus any conceivable object, physical, abstract or mental, can actually be
represented by a finite symbolic sequence.

The requirement that a set of words be decipherable also holds for any communi-
cation system, although the means to achieve it are often different from an irreducible
code, such as using words of constant length (as the codons of the ‘genetic code’
and ‘blocks’ in many technical communication means), or appending to the alphabet
a special character exclusively intended to separate the words, as the ‘space’ in the
written human language.

Besides being endowed with a meaning by semantic rules, any word can itself be
split into smaller symbolic sequences specifying each some property. For instance,
the individual bits of a word may be interpreted as answers to dichotomic questions
which eventually enable uniquely identifying an object within a hierarchical taxo-
nomic system. Similarly, the number used for identifying a person, as discussed in
Sect. 2.4.3, can be split into subsequences such that the properties they indicate, taken
together, correspond to a unique identity. Doing so can be interpreted as endowing
the words with a morphology. Phonetics also constraints the sequence of letters used
as a word since it is intended to be pronounced.

This remark moreover reveals a quantitative relationship between information and
semantics, since the length in bits of an information message indicates how many
independent dichotomic semantic distinctions, at most, the information it represents
can provide. Information theory uses it for measuring the information quantity it
bears. The quantitative measure of information is thus relevant to semantics, in the
above meaning, although semantics is basically qualitative. We may thus think of an
information as a container for semantics. Each of the bits of an information message
can be endowed with a meaning, that of answering a dichotomic question. Before
a correspondence is established between the bits and the questions, the information
does not contain any semantics but it is able to receive some. Information is like an
empty shell and semantics a hermit crab. Then the quantity of information, i.e., the
shell volume, limits the size (but only the size) of the crab it can host. Moreover,
this metaphor matches the protecting ability of the shell since an information cannot
‘survive’ without error-correction coding.

Besides establishing a correspondence between words and objects (i.e., naming
objects), linguistic systems use the location of a word in a sequence made of succes-
sive words so as to express the relationship of the object that this word represents to
the objects associated with the other words, thus resulting in a syntax.

Notice that both morphology and syntax necessarily imply that the symbols of a
message are ordered, meaning that any two symbols being given, it can be stated
unambiguously that one of them precedes the other one. Let us more closely consider
the case where a message is associated with a ‘recipe’, understood as the sequence
of instructions needed for constructing some object. For instance, the genome of
a living being contains a sequence of instructions which in a proper environment
eventually results in the assembly of a phenotype. Then a bit or a block of successive
bits of the corresponding information message instructs a step of the construction
process, hence its semantic content entirely depends on its location in the message.
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The steps of the construction process must be executed successively, so their order
in the message must match their order in time. The time axis is a unidimensional
space, and so should be the medium which bears the message. A recipe, thus, cannot
be borne by a medium having more than a single dimension. An object fabricated
according to a recipe may have, and generally has, more than a single dimension
and then cannot itself act as a recipe. Insofar as it has been entirely specified by the
recipe, however, it bears at least the same amount of information as the recipe itself.
The information borne by a multidimensional fabricated object will be referred to
as structural, or Aristotelian, as opposed to the symbolic information borne by the
sequence associated with its recipe.

Not any sequence of events can act as a recipe. For instance, Shannon’s informa-
tion theory associates an information quantity to any event in terms of its probability
of occurrence. To have any impact on the physical world, an event or sequence of
events must have a lasting action, e.g., be recorded as a sequence of discrete symbols,
thus becoming symbolic information in the above meaning. If it does not, as often
occurs when it is associated with an event at the microscopic level, we say that it
bears only potential information.

The above remarks enable us to distinguish potential, symbolic and structural
information (Battail 2009), a distinction we believe of crucial importance. The po-
tential information does not interact with anything which can be observed. Only the
symbolic information can be copied or used as a recipe, since the structural infor-
mation lost unidimensionality which enables communication. The following figure
depicts the relationship of potential, symbolic and structural information. The trans-
formation of potential into symbolic information involves recording, i.e., inscription
of symbol(s) on a macroscopic physical support; the transformation of symbolic into
structural information needs semantics.

Both the inscription of symbols and the use of a symbolic sequence as a recipe
for assembling a multidimensional object are irreversible. We may thus interpret
this statement as extending the central dogma of molecular biology which tells that
genes determine the composition of proteins, not the other way round. Instead of
molecules, however, it concerns information as an abstract entity.

Let us elaborate on the properties of symbolic information and on its place in
the extended central dogma just stated. In order to make it uniquely defined and
indefinitely reproducible, it must be discrete and finite, i.e., its representative must be
finite sets of symbols from a finite alphabet. This excludes any analog entity. Being
a unidimensional set of symbols, i.e., being orderly, enables it to bear the largest
possible information quantity, i.e., k shannons in the binary case if the sequence
length is k (or k log2 (q) shannons for an alphabet of size q). Failing to use orderly
sequences would greatly reduce this quantity, to log2 (k + 1) in the binary case and,
in the q-ary case, to a quantity much smaller than k log2 (q) which has a less simple
expression (Fig. 4.9).

Any bit in the shortest binary representative of a symbolic information (referred
to in Sect. 2.2 as its information message) has a well defined location relatively to the
others. Such a ‘relation of order’is needed for assigning meanings by means of the tree
which represents the information message, and moreover for expressing the syntactic
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potential symbolic structural

Fig. 4.9 Irreversibility of information transfer (extended central dogma). Only symbolic informa-
tion can be copied, as indicated by the double arrow

rules which are themselves needed for any description or specification. Topology tells
that only the elements of a unidimensional space are endowed with a relation of order.
Symbolic information is borne by a unidimensional sequence and thus able to act as a
recipe for constructing a multidimensional object. Being multidimensional, however,
this object can no longer be used itself as a recipe2. This is the deep mathematical
reason why the transition from symbolic to structural information is irreversible.
We may think of it as a posteriori justifying that information theory is basically the
science of sequences.

This situation is not foreign to biology since the genetic message borne by a gene
instructs the assembly of a polypeptidic chain eventually becoming a protein, but a
protein cannot itself be copied. Crick and Watson referred to this feature as the central
dogma of molecular genetics. As a 3-dimensional object3, a protein can be specified
by a unidimensional message, i.e., a genomic sequence, not by an object having
like itself more than one dimension. Yockey recognized that the central dogma is a
constraint of mathematical character due to the genetic mapping being many-to-one,
thus also valid outside molecular genetics for any mapping which takes a similar
form (Yockey 1992).

This entails that a protein cannot be directly copied, and the same is true for a whole
phenotype. Its symbolic description by a genomic sequence is needed to this end.
Before the DNA replication mechanism was discovered, von Neumann showed that
the existence of its symbolic description as a part of an object is a logical requirement
for its self-reproduction (von Neumann 1966), and this result was applied by Howard
Pattee to biology (Pattee 2005). A phenotype too has more than a single dimension; it
may be thought of as 4-dimensional if we include time as a relevant dimension besides
the spatial ones in order to account for its development. Then, the irreversibility of
time is another reason why copying the structural information of a phenotype is
impossible. This impossibility extends the reach of the central dogma far beyond
molecular biology, confirming Yockey’s statement.

Some consequences of the fundamental theorem of source coding Given a source
of entropy per symbol H , the fundamental theorem of source coding entails that an
n-bit sequence it generates cannot in the average represent an information message
shorter than k = nH . A meaningful message thus cannot be arbitrarily short. This has
been very cleverly illustrated by Molière in his comedy Le Bourgeois Gentilhomme
(1670). Monsieur Jourdain, a bourgeois, is infatuated with nobility. Cléonte, a young
man of common rank, is in love with his daughter. In order to be accepted as his

2 Analog means for copying multidimensional objects exist, but they are only approximative so they
are not reliable when they are repeatedly used.
3 It may even be thought of as a 4-dimensional object since folding the assembled polypeptidic
chain into a 3-dimensional molecule involves time.
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son-in-law, he asserts he is the son of the Turkish sultan and speaks a fake Turkish
language that his servant Covielle is assumed to translate. Here is a short excerpt of
this play:

Cléonte (in Turkish attire)
Bel-men.
Covielle
He says that you should quickly go with him to prepare yourself for the ceremony, in order
to later see your daughter, and to conclude the marriage. Il dit que vous alliez vite avec lui
vous préparer pour la cérémonie, afin de voir ensuite votre fille, et de conclure le mariage.
Monsieur Jourdain
So much in two words? Tant de choses en deux mots?
Covielle
Yes. So is the Turkish language, it says much in few words. Go quickly where he wishes.
Oui. La langue turque est comme cela, elle dit beaucoup en peu de paroles. Allez vite où il
souhaite.

The audience intuitively perceives that Covielle’s long sentence recounts too many
circumstances to actually translate Bel-men, and laughs. (Were languages not redun-
dant and would a meaning be associated with each possible combinations of letters,
however, the set of six-letter words could designate no less than 266 = 308, 915, 776
distinct instances.)

This example moreover shows that it is possible to represent a long message by
a much shorter one provided it is explicitly agreed upon: for Monsieur Jourdain, the
meaning of Bel-men is actually what Covielle told him! However, ‘Bel-men’ does
not belong to any linguistic system and thus refers only to Covielle’s sentence. A
similar function is that of a title: when I say ‘The Bible’, I use a short message in
order to evoke a long sequence. The title is not substituted for the work but designates
it. It may be used as an address for retrieving the book in a catalog or in a library.
Performing this function implies that it is a nominable entity, as discussed in Sect. 2.4.

As another example, the denizens of the French town of Marseilles are said to like
jokes and to be somewhat lazy. Mr Durand travels in a train compartment with three
of them and expects to hear pleasant jokes. One of the guys says 13, another says
8, the third says 24, and all three laugh after a number has been uttered. Mr Durand
asks why they laugh. They reply that they all know the same set of jokes, so it costs
less energy to endow each of them with a number and to pronounce this number than
to actually tell the joke.

That it is possible to represent a long message by a much shorter one, its title or its
address, does not actually contradict the fundamental theorem of source coding which
tells that there is a lower bound to the length of the information message associated
with any sequence generated by a source of non-zero entropy. Let us examine this
case more closely. As contemplated by the algorithmic information theory to be
considered in Sect. 6.1, the use of a universal computer enables generating any
sequence. Designating a sequence by a title or an address, on the contrary, implies
that some finite set of sequences, a corpus, has been defined prior to performing
the encoding process. Addressing within a given corpus thus refers to a closed,
preexisting set. The smaller the number of elements in the corpus, the shorter can be
their titles or addresses, regardless of their intrinsic length. Source coding according
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to information theory refers to an open, potentially infinite, world of sequences.
It does not prevent designating by its address any sequence available somewhere,
instead of explicitly including the intended output sequence within the computer input
as in Example d) of Sect. 6.1. Source coding in the information-theoretic meaning
is thus far more general.

In human culture, references to a corpus actually play a major role, but languages
give access to an open set of sequences. Whether references to some corpus are used
in biological phenomena remains to be investigated.

A source as a redundant encoder: the Shannon-McMillan theorem We gave
in Sect. 3.4.2 above an example of channel coding, which has been useful for un-
derstanding the concept of redundancy. A binary information message u of a well
defined length k was encoded into a sequence of length n > k. As belonging to a
minority subset of all possible sequences of length n, this sequence could be reliably
distinguished from others, thus becoming to a certain extent resilient to symbol er-
rors and thus better fitted to be transmitted over the channel. It was then possible to
define an information as an equivalence class among sequences, with respect to the
possible encodings of some given information message. The information message
is in itself a nominable entity, hence does not suffer any change, while its encoding
depends on arbitrary choices and results in more or less efficient error correction.

The converse problem, namely source coding, consists, given some redundant
sequence, of determining the information message of the equivalence class to which
it belongs. The problem in its whole generality, referred to as ‘universal source
coding’, has no explicit solution. However, when a statistical description of the source
which generates the given sequence is available, i.e., when adequate source models
are available, known algorithms like Huffman’s optimally perform this task. Source
coding ideally results in cancelling any redundancy, delivering messages made of
independent equally probable bits, thus bearing each an information quantity of one
shannon. Perfect source coding operating on the output of the channel encoder of
Fig. 3.4 would thus result in the recovery of the sequence u, the k-bit information
message which was purposely encoded.

But what about sequences of ‘natural’ origin, i.e., not purposely generated by an
encoder but found in human culture or in biology? In the general communication
process described according to Shannon’s paradigm (see Sect. 4.1) a source generates
sequences intended to some distant, hence distinct, destination, to be transmitted
over some channel. It turns out that the situation met in the case of purposeful
encoding as in Sect. 3.4.2, and characterized by the rarity of the sequences which may
actually be transmitted (as compared with all possible sequences), is also relevant
to a rather general family of sources, provided the word ‘almost’ is used to weaken
some statements by indicating that they are only approximate; they moreover become
exact in the limit, as the length of the sequences tends to infinity. This is the content
of the Shannon-McMillan theorem, to be now briefly stated without proof.

Consider a stationary and ergodic source, moreover assumed of finite memory.
For simplicity’s sake, assume that its alphabet is binary. Then the Shannon-McMillan
theorem states that almost all sequences of length n that the source generates belong to
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a set of almost 2nH elements (referred to as ‘standard’ or ‘typical’ sequences), where
H is the source entropy as defined in Sect. 4.2.3 (assumed here to be expressed in
binary units, i.e., in shannons) (McMillan 1953). If the word ‘source’in this statement
is replaced by ‘encoder’ and the word ‘almost’ is deleted, it describes indeed the case
of deliberate redundant encoding as expounded in Sect. 3.4.2.

Notice that the actual information message often remains hidden although a re-
dundant sequence of its equivalence class is known and used for processing the
information. Perfect source coding of the redundant sequence should be performed
in order to uncover its actual information message, but it is generally not needed
since the available redundant sequence of its equivalence class adequately represents
the information. Furthermore, the necessary source coding algorithm may well not
be known.
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Chapter 5
Channel Capacity and Channel Coding

Abstract Chapter 5 continues the discussion of Shannon’s information theory as
regards channel capacity and channel coding. Simple channel models are introduced
and their capacity is computed. It is shown that channel coding needs redundancy and
the fundamental theorem of channel coding is stated. Its proof relies on Shannon’s
random coding, the principle of which is stated and illustrated. A geometrical picture
of a code as a sparse set of points within the high-dimensional Hamming space which
represents sequences is proposed. The practical implementation of channel coding
uses error-correcting codes, which are briefly defined and illustrated by describ-
ing some code families: recursive convolutional codes, turbocodes and low-density
parity-check codes. The last two families can be interpreted as approximately im-
plementing random coding by deterministic means. Contrary to true random coding,
their decoding is of moderate complexity and both achieve performance close to the
theoretical limit. How their decoding is implemented is briefly described. The first
and more important step of decoding enables regenerating an encoded sequence.
Finally, it is stated that the constraints which endow error-correcting codes with re-
silience to errors can be of any kind (e.g., physical-chemical or linguistic), and not
necessarily mathematical as in communication engineering.

The proof of the fundamental theorem of source coding given in Sect. 4.3.3 involves
only a few lines of computation, moreover using easy mathematics. In sharp contrast,
the proof of the fundamental theorem of channel coding demanded a very innovative
method, namely Shannon’s random coding. No proof of the theorem using simpler
means has yet been found. The aim of source coding, although important, is not as
vital as that of channel coding which concerns the very integrity of communicated
messages, hence that of information. This chapter is thus capital and its topics will
reveal of special importance in the second part of this book devoted to biological
applications. We try in what follows to expound the main features of channel coding
as simply as possible but without betraying it. We deliberately chose insight rather
than formal rigour.

As the sources considered in the preceding chapter were mathematical models of
message generators, the channels to be considered here are mathematical models of
transmission means. They represent, in the form of a ‘black box’, i.e., of a description
reduced to the relation between an input and an output, the set of transmitting devices
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and transmission channels or propagation media. Most physical channels are very
complex and the models used in the theory are widely simplified (this is true also
for sources). Even an assumption as necessary to the mathematical treatment as
stationarity has often little rational or practical justification.

Since we limited ourselves as yet to finite-alphabet sources, it is logical to consider
here channels with a finite input alphabet. It should be however underlined that the
perturbing noise is often basically continuous (at least at the macroscopic scale), so
restricting the channel output to a discrete alphabet in order to alleviate its further
processing implies an information loss which is paradoxical in techniques intended
to communicate information. Actually, studying channels with a continuous output
is of real interest in communication engineering. It is shown indeed in the sequel that
the most successful decoding algorithms deal with ‘analog’, as opposed to discrete,
channel outputs.

5.1 Channel Models

As stated in Sect. 4.1, the effects of the perturbations are included in the channel
models. Their presence results in the output channel depending only probabilistically
on its input. In its simplest form, a channel can be described by a transition diagram.
It is an oriented graph which represents how the channel transforms the symbols of its
input alphabet into symbols of the output alphabet. Points at left represent all the input
symbols, points at right all the output symbols, and arrows from left to right represent
the possible transitions from input to output symbols that the channel operates. The
arrows are labelled with the probability of the corresponding transitions. If all the
transition probabilities do not vary with time the channel is said to be stationary.
Figure 5.1 shows the transition diagrams of two stationary channels having both
binary input symbols, as very simple and useful examples.

The input and output of the channel at left (Fig. 5.1a) are both binary. This channel
is symmetric, meaning that the probability of the output ‘1’ when the input is ‘0’
equals the probability of the output ‘0’ when the input is ‘1’, their common value
being denoted by psu (where the subscript ‘su’ stands for ‘substitution’, meaning that
the wrong bit has been substituted for the correct one). This very simple model is
frequently used and most of the error-correcting codes are designed for this channel.
Being symmetric, it can be modelled as in Fig. 5.1b by the addition modulo 2 to the
binary input variable X of a random binary variable Z equal to ‘1’ with probability
psu, which may be referred to as an error.

The channel at right (Fig. 5.1c) has a binary symbol as input but its output alpha-
bet is ternary, namely {0, 1, ε}. At variance with the binary symmetric channel, no
transition is allowed from the input ‘0’ to the output ‘1’ or from ‘1’ to ‘0’. The only
allowed transitions to an output symbol different from the input one lead to ε, and
their probabilities have been assumed to be the same, namely per. The subscript ‘er’
stands for ‘erasure’, the word used to refer to this case; it is a milder perturbation
than the error in a binary symmetric channel since, if the output symbol is ε, it is not
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Fig. 5.1 Models of channels with binary input alphabet. In a, transition diagram of a binary sym-
metric channel with error probability psu. In b, alternative representation of the same channel by
addition modulo 2 to the input X of a random binary variable Z assuming the value 1 with probability
psu. In c, transition diagram of a binary erasure channel, with erasure probability per

recognized as belonging to the binary alphabet and thus not taken into account, but
the received symbol is not mistaken for its binary complement.

Another very important channel has a discrete input and a continuous output. If
its input is binary, it models the case of a binary variable represented by antipodal
signals (as defined in Sect. 3.1 above) perturbed by additive white Gaussian noise.
The output of the channel is that of the matched filter used at the receiving end. It
reads ±√

E +N where N is a realization of a real random Gaussian variable, while
the sign ± represents the input binary variable (see Sect. 3.3).

It has been implicitly assumed as yet that an output symbol is determined by a
single input symbol and thus does not depend on previous input symbols. Such a
channel is referred to as memoryless. There are more complicated situations where
it is not so. Models for such channels can be designed but their use is rather difficult.
The usual means to practically use channels with memory consists of scrambling
their input sequence by means of an interleaver, which makes contiguous bits in the
scrambled sequence uncorrelated (although doing so suppresses a correlation which
would be useful if it could be exploited).

Let us simply say that the usual requirements for making channel models theo-
retically tractable are that they should be causal (an output symbol cannot precede
the corresponding input symbol) and should have finite memory, i.e., only a finite
number of past input symbols besides the present one determine the channel output.
We only consider in what follows stationary, causal, and memoryless channels.

5.2 Capacity of a Channel

5.2.1 Defining the Capacity of a Channel

As defined by Eq. (4.14), the mutual information I (X; Y ) tells what information
quantity knowing the output symbol Y of a channel provides as regards its input
symbol X (or vice-versa since its expression has been shown to be symmetric with
respect to them). However, it does not suffice to characterize the channel alone,
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since according to Eq. ( 4.25) it depends on the probability distribution of the input
symbols, which itself depends on the source which feeds the channel. The capacity
per symbol C of a channel is defined in general as the maximum of the mutual
information I (X; Y ) between its input and its output, per input symbol. The convexity
of mutual information suffices to ensure the existence and unicity of this maximum.
If a channel is regularly fed with input symbols, e.g., periodically, at an average

frequency f , its capacity per time unit is defined as C ′ �= f C.
In the absence of perturbations, the capacity per symbol of a memoryless channel

is just C = log (α) for an input alphabet of size α. In the presence of noise, it is
obviously upper bounded by the noiseless capacity log (α), which is achieved only
when the noise can be ignored. Else the capacity is less and depends on the transition
probabilities.

The capacity per symbol of a memoryless channel has been defined as the maxi-
mum of the mean mutual information I (X; Y ), X and Y being the random variables
associated with the input and output of the channel, respectively. For a finite-memory
channel, the definition of I (X; Y ) should be extended in order to take into account
the possible dependency of the channel output on successive input symbols. For the
most general meaning of ‘capacity’, the maximum should be understood with respect
to all sequences generated by stationary and ergodic sources having as alphabet that
of the channel input. Then the channel capacity is said to be ergodic. If the channel
is memoryless, the maximum should be understood with respect to all possible dis-
tributions of the input variable X. Properly extending the meaning of X and Y , the
channel capacity is defined in general as:

C = max I(X;Y). (5.1)

The capacity of a channel is thus the largest information quantity which it can
transfer. Its maximum is defined with respect to the sole parameter which may
be adjusted once the channel is given, i.e., the probability distribution of its input
symbols in the memoryless case or, more generally, the choice of the source which
is connected to its input because, according to Eq. ( 4.25), the mutual information
I (X; Y ) depends on the channel, of course, but also on the source. Determining its
maximum thus involves not only the computation of this mutual information, but
of the source parameters which maximize it. The second step can be avoided in
the important case of a symmetric channel, since it is easily shown that the mutual
information then achieves it maximum for equally probable input symbols: Pr(X =
xi) = 1/α, where xi , i = 0, 1, . . ., α − 1, is a symbol of the input alphabet of size
α. Then the source entropy H (X) is maximized at the same time as I (X; Y ). A
channel is said to be symmetric (1) if the set of transition probabilities from any of
the input symbols does not depend on this input symbol and (2) if, moreover, the set
of transition probabilities to any of the output symbols does not itself depend on this
output symbol.
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5.2.2 Capacity of Simple Discrete Input Channels

As regards the channels of Fig. 5.1, the binary symmetric channel obviously fulfills
these conditions. The binary erasure channel does not fulfill condition (2) but one
easily checks that the maximum of its mutual information is nevertheless achieved
for equally probable input symbols. The mutual information of both channels is
easily computed assuming the input bits to occur with probability 1/2. Using the
second equality in (4.25), namely I (X; Y ) = H (Y ) −H (Y |X), results for the binary
symmetric channel in the capacity (expressed in shannons):

Cbsc = 1 − H2(psu), (5.2)

where the function H2( · ) has been defined above by Eq. (4.11). One notices that
Cbsc = 0 for psu = 1/2, a case where the channel has actually become useless since
its output is independent of its input. The capacity achieves its maximum value 1
for psu = 0 and psu = 1. If the first case is not surprising since then the channel is
errorless, the second one is a bit more so, but it suffices to swap the labels ‘0’ and
‘1’ of the output symbols (which are in fact arbitrary) to revert to the case where
psu = 0. Taking account of the symmetry, no restriction of generality results from
assuming that psu ≤ 1/2.

For the binary erasure channel, the computed capacity (again in shannons) is

Cbec = 1 − per, (5.3)

a very simple expression which may be interpreted as follows: in the average, a
fraction per of the symbols are erased so the information they bear is lost. The
remaining ones bring each an information quantity of one shannon, so the mean
information quantity borne by an output symbol is 1 − per shannons per binary
symbol.

As regards the channel with binary input and additive white Gaussian noise, its
capacity Cbg is well defined since the mutual information exists for a continuous
output channel. This channel is symmetric so its capacity is achieved for the input
variable assuming 0 or 1 with probability 1/2. It is a function of the signal-to-noise

ratio ρ
�= 2E/N0, where E is the energy of each received binary signal and N0/2

the noise variance. The expression of this capacity is not simple so we do not write
it out. Let us just say that it is a continuous increasing function of ρ. For very small
values of ρ the capacity Cbg approximately equals ρ/ ln (2) (as if no restriction were
put on the input alphabet). When the signal-to-noise ratio ρ approaches infinity, it
tends to the horizontal asymptote Cbg = 1 shannon which obviously results from the
restriction of the channel input to the binary alphabet.

5.2.3 Capacity of the Additive White Gaussian Noise Channel

The entropy defined in Sect. 4.2.2 above has been restricted to the case of a discrete
random variable because it suffices to understand the entropy concept and because
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it is most often met in practical situations. Moreover, extending the entropy concept
to a continuous random variable involves specific mathematical difficulties. It turns
out that the differential entropy introduced in Sect. 4.2.3 lacks some of the useful
properties of the discrete entropy. In the physical world, a continuous random variable
is always known within some finite approximation so its ε-entropy, to be alluded to
in Sect. 5.2.4 below, has the same desirable properties as the entropy of a discrete
random variable.

We already noticed that, contrary to the entropy, the mutual information hence
the channel capacity can be easily extended to continuous input and output, either
separately or both. The channel having as input a continuous random function of time
f (t) of frequency range limited to the interval (0, B) and of limited average power
S, received in the presence of additive white Gaussian noise of spectral density N0,
is extremely important as expressing the largest information quantity which can be
reliably communicated in the presence of thermal noise (as considered in Sect. 3.3)
without any restriction to a finite alphabet since both the channel input and output
are continuous. Shannon showed that the capacity of this channel is:

C = 1

2
log2 (1 + 2E/N0) = 1

2
log2 (1 + ρ) (5.4)

shannons, where E = 2BS denotes the average energy per sample and ρ
�=

2E/N0 = S/N0B is the signal-to-noise ratio (Shannon 1948, 1949). This capacity
is expressed per sample of f (t) at the frequency 2B. A sample is the value assumed
by the function at a given instant, and sampling f (t) at the frequency 2B means
considering the set of samples {f (n/2B)} for all integer values of n. The sampling
theorem tells that, because the frequency range of the function f (t) is limited to
(0, B), the successive samples thus obtained are independent so the discrete set of
samples {f (n/2B)} is fully equivalent to the continuous function f (t). The capacity
expressed by Eq. (5.4) is achieved when the input function has a Gaussian distribu-
tion. The curve which represents the capacity C given by Eq. (5.4) is actually the
envelope of those which represent the capacity in the case of a finite input alphabet.
Regardless of the alphabet size, Eq. (5.4) thus expresses an absolute limit to the in-
formation quantity which can be reliably received when the available signal-to-noise
ratio has some value ρ.

Considering the capacity C ′ per time unit enables rewriting Eq. (5.4) as

C ′ = B log2 (1 + S/N0B) = B log2 (1 + ρ) (5.5)

shannons. A very interesting geometrical interpretation of the formulas (5.4) or (5.5)
has been given by Shannon in (Shannon 1949), and our development of Sect. 5.4.1
concerning the binary symmetric channel transposes Shannon’s argument to this
simpler case.

If the signal-to-noise ratio ρ is very small, keeping only the first order term in
the development of the logarithmic function with respect to ρ results in the capacity
being proportional to ρ, i.e., C ≈ ρ/2 ln (2) and C ′ ≈ Bρ/ ln (2). If on the contrary
ρ is very large, 1 can be ignored in (5.4), which results in C ≈ ln (ρ)/2 ln (2) and
C ′ ≈ B ln (ρ)/ ln (2).
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Fig. 5.2 Channel
representing the
‘quantization’ of an analog
random variable X into a
discrete one Y . All the points
of a 2ε-long segment of the
line where the values of X are
represented are mapped into a
single point y of Y

2ε y
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The equalities (5.4) and (5.5) are very important as establishing a relationship
between the largest quantity of information which can be communicated over an
additive white Gaussian noise channel and its signal-to-noise ratio ρ. In other words,
they establish a link between the physical world of energy and the abstract world of
information. We interpret in this spirit Boltzmann constant as a signal-to-noise ratio
in Sect. 6.3.2 below.

5.2.4 Kolmogorov’s ε-entropy

The intrinsic approximation of any physical measurement entails that the difference
between two measured values is meaningless if these values are close enough. Shan-
non, in part V of his seminal paper (Shannon 1948), considered the case where a
continuous quantity is approximately communicated while satisfying some ‘fidelity
criterion’. Kolmogorov defined the entropy of a continuous random variable from
this point of view, and named it ε-entropy (Kolmogorov 1956). In any case, the ε-
entropy has properties similar to those of the discrete entropy defined in Sect. 4.2.3.
Although some fidelity criteria may lead to complicated expressions, we consider as
an example the very simple case of what in engineering is referred to as ‘quantiza-
tion’ of an analog quantity, which is widely used for approximately representing an
analog quantity by a discrete one.

In order to define a finite entropy in this case, let us first consider the channel which
has as input an analog value X which results from a measurement. Let us divide the
range of values assumed by X into contiguous segments of length 2ε. No value x

assumed by X is at a distance from the centre y of some segment larger than ε which
thus measures the largest possible absolute difference between the measurement
result and its approximation which prevents to distinguish between them. We may
thus represent x by y. The set of segment centres constitutes a discrete random
variable Y and we may interpret the mapping of an element x of X by an element
of Y as a channel, as represented in Fig. 5.2 above. This kind of representation
of an analog quantity is of common use in engineering where it is referred to as
‘quantization’. Then the mutual information I (X; Y ), which remains meaningful
for X continuous as shown in Sect. 4.2.3, measures the information quantity of a
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Fig. 5.3 Top, channel alone with its input and output variables X and Y , respectively. Bottom, the
same channel preceded by an encoder receiving the input variable U and followed by a decoder
delivering the output variable V . The input and output variables of the channel are now denoted by
X′ and Y ′, respectively

random variable deriving from a continuous one by not distinguishing two values if
they differ by less than ε.

5.3 Channel Coding Needs Redundancy

The mere possibility of communicating through a channel some information quantity
measured by its capacity does not solve the problem of communicating through this
channel a message generated by a source having this information quantity as entropy.

Let us consider the expression (4.25) of the mutual information I (X; Y ) = H (X)−
H (X|Y ). It equals H (X), which measures the information quantity borne by the
channel input X, coming from a source assumed to be stationary and memoryless
and intended to the destination, minus a term which measures the uncertainty as
regards X which remains when Y is given, measured by H (X|Y ), often named
in this context ambiguity or equivocation. Clearly, the actual communication of a
message demands that this term cancels: the messages are faithfully delivered to the
destination only if a criterion of recovering quality which makes the equivocation
negligible is satisfied. But H (X|Y ) solely depends on the channel once the probability
distribution of X is given. If the channel is noisy, H (X|Y ) cannot in general be
neglected so directly connecting the source to the channel input does not ensure that
messages are communicated as faithfully as desired. Intermediate devices, namely
an encoder and a decoder, should be inserted between the source and the channel
input on the one hand, between the channel output and the destination on the other
hand. Any message generated by the source should be transformed by channel coding
and the inverse transformation should be performed on the channel output so as to
recover the message intended to the destination.

This encoding is necessarily redundant, as will be shown with the help of Fig. 5.3.
The channel alone has been represented at the top. Its input and output variables are
denoted by X and Y , respectively. In the expression H (X) − H (X|Y ) of their mean
mutual information, H (X|Y ) is strictly positive, depending on the channel. At the
bottom, the channel is preceded by an encoder and followed by a decoder. We
assume for simplicity’s sake that the encoder output alphabet is the same as its input
alphabet, which is itself identical to the input channel alphabet. Let U be the input to
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the encoder and V the output of the decoder, U and V being both random variables.
Then the relation homologous to Eq. (4.25) is true:

I (U ; V ) = H (U ) − H (U |V ),

but the recovery criterion now demands that H (U |V ) < ε, where ε is a given positive
constant smaller than H (X|Y ) which specifies how faithful should be the message
recovery. Let X′ and Y ′ denote the input and the output to the channel, respectively.
The encoder and the decoder do not create, and at best do not destroy, information. For
a well designed encoding system, no information is lost, so I (U ; V ) = I (X′; Y ′). It
follows that H (X′)−H (U ) = H (X′|Y ′)−H (U |V ). The recovery criterion demands
H (U |V ) < ε, which entails that H (X′|Y ′) itself should be arbitrarily small. This is
compatible with H (X|Y ) positive and possibly large because the source and the
encoder taken together can be considered as a new source with memory, at variance
with the original source, since the encoder acts on sequences of input symbols, not
separately on each of them. Its successive output symbols X′ are thus mutually
dependent. We may interpret X as the memoryless restriction of the encoder output
X′, i.e., ignoring the mutual dependency between the symbols due to the encoding
operation, which entails that H (X) is larger than H (X′) and I (X; Y ) larger than
I (X′; Y ′).

5.4 On the Fundamental Theorem of Channel Coding

The fundamental theorem of channel coding states that an appropriate coding process
enables satisfying a recovery criterion however stringent it is, hence performing
errorless communication, provided the source entropy Hs is smaller than the channel
capacity C:

Hs < C, (5.6)

regardless how close Hs may be to C. Errorless communication is not possible if Hs

exceeds the channel capacity C.
This statement constitutes the most fruitful contribution of information theory to

communication engineering. That noise does not prevent errorless communication
but only sets an upper limit to the communicated information quantity was quite
unexpected in 1948, when the theorem was first stated and is, anyway, paradoxical.
Because the theory gave no explicit means for implementing errorless communica-
tion, this result prompted a vast research effort aimed at the design of codes and
decoding algorithms, which eventually succeeded in obtaining an arbitrarily small
error probability with an entropy Hs (or code rate) close to the channel capacity C.
This occurred no earlier than 1993, when the turbocodes were invented.

Since this book is not intended to offer a mathematical treatise of information
theory but hopefully to provide intuitive insight, we just outline a proof of this theorem
based on a geometrical interpretation, closer to Shannon’s original proofs than the
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more general and rigourous ones which were later elaborated. This deliberate lack
of rigour may be accepted since indisputable proofs are known to exist. Moreover, at
variance with the early years of information theory when mathematical proofs were
the only reasons for accepting the fundamental theorem as true, the progresses made
since then in the field of error-correcting codes have provided a blatant experimental
confirmation of its validity. All of us have in our pocket a proof of the theorem, I
mean a mobile phone.

5.4.1 A Geometrical Interpretation of Channel Coding

We begin with defining a code intended to the binary symmetric channel and give
a geometrical interpretation of it. A binary (n, k) code C of length n and dimension
k, with k < n, is a subset of M = 2k sequences, referred to as codewords, among
the 2n n-symbol binary sequences. Encoding consists of establishing a one-to-one
correspondence between each codeword and each of the 2k possible information
messages of length k. Transmitting a codeword then uniquely designates an infor-
mation message. Since an n-bit codeword represents a k-bit information message,
the inequality k < n actually entails that this code is redundant.

Let us consider the finite space of n-bit words, which has been referred to as the
Hamming space of dimension n and denoted by Sn in Sect. 3.4.2. Its 2n elements
are referred to as its points. The Hamming distance between any two points of this
space is defined as the number of bits where the corresponding words differ. If a
binary symmetric channel (as defined in Sect. 5.1) is used, the received word is
represented by a point that errors make different from that which represents the
actually transmitted codeword: if t substitution errors occurred, the received point is
at a Hamming distance of t from the transmitted one. It is assumed that the distance
between any two codewords of C has a minimum value d which is larger than 1.
If the minimum distance d of the code is larger than twice the number t of symbol
errors which occurred, the received word enables unambiguously identifying the
actually transmitted word since it is closer to it than to any other codeword. The
occurring symbol errors thus do not prevent its correct identification, hence that of
the corresponding information message. It by this means and in this meaning that
the code C can be referred to as error-correcting.

The optimum decoding rule, which determines the most likely transmitted
codeword, can thus be very simply stated:

choose the codeword the closest to the received word for the Hamming distance.

The set of points in the Hamming space which are closer to a codeword than to
any other one is referred to as its Voronoi region. Optimally decoding a sequence
represented by any point in this region thus results in this codeword.

The number of bit errors which occurred when a codeword has been transmitted
over a binary symmetric channel of bit error probability psu is a random variable of
mean t̄ = npsu. If t̄ is smaller than d/2, this rule most often results in recovering
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the actually transmitted codeword. It fails to do so, an event referred to as ‘decoding
error’, with a probability the smaller, the larger is n, which moreover vanishes as
n approaches infinity as a consequence of the law of large numbers. However, no
reliable identification of the transmitted codeword is possible if t̄ ≥ d/2: the above
decoding rule then fails with a non-zero probability. When it fails, it results in an
error pattern of at least d bit errors.

In geometrical terms, the point which represents the received word is probably
close to the surface of an n-dimensional hypersphere of Sn centred on the transmitted
word, the radius r of which is the integral part of the expected number of errors
t̄ . Asymptotically for n approaching infinity, it tends to be on the surface of this
hypersphere. If t̄ is small enough with respect to the minimum distance d of the code,
the point which represents the received word is with high probability (surely when n

approaches infinity) closer to the transmitted word than to any other codeword. For the
binary symmetric channel of bit error probability psu, we may think of each codeword
as surrounded by a ‘noise (hyper)sphere’ having as radius (for the Hamming metric)
the integral part of t̄ = npsu, near the surface of which the point which represents
the received word is almost surely located. For n approaching infinity, Shannon
wrote that the noise sphere becomes as well defined as a billiard ball (in a somewhat
different context (Shannon 1949), but this metaphor is still valid here). Then, if
all the noise spheres centred on the codewords become disjoint, the probability of
a decoding error vanishes as n approaches infinity and errorless communication is
asymptotically possible. If the noise spheres intersect each others as n approaches
infinity, errorless communication is not possible.

The best code is intended to minimize the probability of a decoding error for
the above optimum decoding rule. It can be thought of as distributing M < 2n

points within Sn so as to make them as far apart to each other as possible for the
Hamming distance. For a given value of the symbol error probability psu of the binary
symmetric channel, there is clearly a limit to the number M of points which can be
put in Sn while keeping the distance between these points larger than or equal to
d = 2t̄ = 2npsu. Let Mmax denote this number. The quantity

Rmax = lim
n→∞

log2 (Mmax)

n

is the largest possible information rate per symbol which can be communicated
through this channel: its capacity C. For an (n, k) code, 2k ≤ Mmax entails k/n ≤ C.
In geometrical terms, the design of the best code consists of spreading M = 2k

points as evenly as possible, avoiding any local concentration of points which would
diminish the largest minimum distance of the code. But how to spread as evenly
as possible M points within the Hamming space Sn? This problem has no known
deterministic solution except for very few couples (n, k). The solution given by
Shannon is random coding, to be now examined.
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5.4.2 Random Coding, its Geometrical Interpretation

Shannon’s proof of the channel coding theorem relies on the extraordinary idea of
random coding (Shannon 1948). Since no one knew (and no one still knows) how to
design the best possible code, and a fortiori no one could compute the probability of
erroneous decoding associated with it, Shannon considered, instead of a single code,
a large set of randomly chosen codes. ‘Randomly chosen’ means here that each bit
in a codeword is chosen at random independently of the other bits, each codeword
in a code is chosen at random independently of the other codewords, and each code
in the set of codes is chosen at random independently of the other codes.

The recourse to randomness may look strange since any random choice is by
definition completely unexpected, hence a sequence of random choices is highly
irregular. Do not forget however that when very many random choices occur with
constant probabilities, a statistical regularity appears. Probability theory states pre-
cise laws which concern random choices successively effected very many times. The
‘laws of large numbers’ tell that the observed frequencies tend to the probabilities
when the number of considered occurrences increases, and moreover tell how closely
and how fast they do. Surprisingly, randomness actually results asymptotically in the
most regular possible average distribution. If we think of a code, in geometrical
terms, as a set of 2k points among the 2n points of the n-dimensional Hamming
space, choosing them at random results in spreading them as evenly as possible in
the average for n and k large enough.

Shannon computed the average probability of a decoding error for such a random
ensemble of codes and showed that, provided the condition of the theorem is met
(i.e., the source entropy is smaller than the channel capacity), then this average error
probability can be made arbitrarily small by indefinitely increasing the codeword
length. The ensemble of random codes contains at least a code as good as the average,
which shows that ‘errorless’ communication is possible. This code, however, is
not explicitly identified. Errorless should be understood in an asymptotic sense,
meaning that the probability of error can be made as small as desired by increasing
the codeword length and using codes optimally fitted to this increasing length.

The original proof given by Shannon was critized by pure mathematicians who
pointed out its lack of formal rigour and even expressed doubts about the validity
of the result itself. American mathematicians were especially sceptical, and the first
mathematically sound proofs of the theorem came years later from the Soviet Union,
especially that of (Khinchin 1957): Shannon’s conclusions were fully confirmed but
the conditions of validity of the theorem were more precisely stated. Among later
proofs of the theorem, let us mention that given by Gallager. Using assumptions
somewhat more restrictive but standard in channel coding theory, he gave a simplified
proof of the theorem which moreover provides useful bounds on the best probability
of a decoding error, for a code of finite length n, in terms of its code rate R = k/n

and of its length n (Gallager 1965). However, his proof relies on mathematical
computations which provide little intuitive insight on the problem so we do not
discuss it here. All proofs of the theorem actually rely on the concept of random
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coding as Shannon’s original one. In order to give an idea of the random coding
method, we consider the simple case of a binary symmetric channel as defined in
Sect. 5.1, using the simple geometrical interpretation of channel coding proposed in
Sect. 5.4.1.

A random code results from drawing at random, independently of each other and
once and for all, the 2k words of the code among the 2n sequences of n bits. This code
can thus be defined by the list of its 2k n-bit words. It is comparatively easy to prove
that errorless communication demands that the source entropy does not exceed the
channel capacity, and it is what is done in the following. The positive statement of
the theorem, i.e., that codes can be designed so as to perform arbitrarily close to this
upper bound, is by far the most difficult to prove, at least from a formal point of view.
However, we may accept as an axiom that no distribution of points in Sn is more
even in the average than that which results from random coding, asymptotically for
n approaching infinity. Then, no proof of the positive statement of the fundamental
theorem is needed.

For some insight on the impossibility that the code rate k/n exceeds the chan-
nel capacity, let us consider transmitting words of a given length n over a binary
symmetric channel where the number of errors per word is somehow kept constant:
exactly t bits, chosen at random among the n bits of a word, are always wrong. This
very unrealistic assumption is not necessary but will provide a useful simplification
and will be justified below. The bit error probability of the channel is thus psu = t/n.
Thanks to this simplifying assumption, the total number of different erroneous words
possibly received when a given codeword is sent is exactly the number of different
possible choices of t objects among n, or combinations, denoted by

(
n

t

)
. The channel

errors can thus transform each of the possibly transmitted n-bit codewords into one
among

(
n

t

)
other n-bit words. No more than M = 2n/

(
n

t

)
distinguishable codewords

can thus exist. But

(
n

t

)

= n!
t !(n − t)! ,

where n! denotes the factorial of the integer n, defined as the product of the n first
integers:

n! = 1 × 2 × . . . × n,

a fast varying function of n. A very useful approximation of n! is provided by Stirling
formula:

n! ≈
(n

e

)n √
2πn

(

1 + 1

12n

)

(5.7)

which is very close to the actual value even for small values of n. Using Stirling’s
formula for n!, t ! and (n − t)! results in the approximation

(
n

t

)

≈ 2nH2(t/n),
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where the binary entropy functionH2(·) has been defined by Eq. (4.11). The maximum
number of distinguishable codewords M has thus the approximate expression:

M ≈ 2n[1−H2(t/n)].

A source connected to the channel input achieves errorless communication if its
entropy H is less than (1/n) log2 (M), thus approximately if:

H < 1 − H2(t/n).

The right hand side equals the channel capacity of the binary symmetric channel of
error probability psu given by Eq. (5.2), so the equality

H < 1 − H2(psu) (5.8)

is asymptotically true for n approaching infinity. The seemingly unrealistic assump-
tion that exactly t bits are in error in any received word becomes itself asymptotically
true as t and n approach infinity. Indeed, when the errors occur at random with prob-
ability psu, the number of bit errors tends to the constant value t̄ = npsu when n

approaches infinity, as a mere consequence of the weak law of large numbers.
Although the calculations based on Stirling’s formula (5.7) are not especially

intuitive, the geometrical interpretation of the above argument is much more so. The
Hamming space Sn of binary words of length n contains 2n elements, or points.
Assuming that exactly t errors occur means that there is a distance of t between the
transmitted word and the received one. Let us define the ‘volume’ of some subset of
this space as the number of words, or points, it contains. The volume of the whole
space is 2n. The volume of the set of possible received words when some word
c is transmitted is

(
n

t

)
. This is actually the ‘surface’ of an ‘error sphere’ of radius

t centred in c but, loosely speaking, when n is large almost all the volume of a
hypersphere in Sn is concentrated on its surface, which is an (n − 1)-dimensional
volume. For n becoming large enough, and if we relax the assumption that exactly
t symbol errors occur, the law of large numbers entails that a received codeword is
with high probability on this surface. That this is true is checked by the fact that this
grossly approximate assumption leads to the inequality (5.8) which expresses the
fundamental theorem of channel coding, since the right hand side in it is the channel
capacity as established by direct computation in Sect. 5.2.

This argument actually shows that it is impossible to achieve error-free commu-
nication if the source entropy is larger than the channel capacity. That it can be
achieved if the entropy is smaller than the capacity, however close to it it may be,
implies that the error spheres are as equally distributed in the whole space as possible.
We accept as an axiom that choosing the codewords at random results in the average,
asymptotically as n approaches infinity, in the most regular possible configuration.

We already mentioned that Shannon wrote that the error spheres become as sharply
defined as billiard balls, and that the number of points in the possible noise spheres
is at most equal to the total number of points in the space. It should not be concluded
that the noise spheres are strictly disjoint: they are only asymptotically disjoint, i.e.,
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the volume that two of them have in common becomes negligible with respect to their
own volume as the number of dimensions n of the Hamming space tends to infinity.
Shannon named this phenomenon ‘sphere hardening’, meaning that it is actually an
asymptotic property.

5.4.3 Random Coding for the Binary Erasure Channel

As another simple example of the same method, the binary erasure channel considered
above has the very simple capacity (5.3) which is quite different from that of the
binary symmetric channel, Eq. (5.2). Let us try to understand why. First of all we
may notice that, if we choose arbitrary binary symbols at the ner places where the
original ones have been erased, only ner/2 erroneous bits result in the average. This
shows that, in some sense, an erasure is equivalent to half an error. The capacity
of the erasure channel with erasure probability per = 2psu cannot thus be less than
that of the binary symmetric channel of error probability psu. It is even significantly
larger since the location of the unidentified symbols is an information in itself which
is destroyed when arbitrary binary symbols replace the signs ε which pinpoint the
locations where the erasures occurred. Destroying an information symbol contained
in the channel output necessarily reduces its capacity. Notice that the ‘equivalence’
of two erasures with a single error only holds in the binary case. If the alphabet size
is α, the number of erroneous symbols which result in the average from arbitrary
choices becomes (α − 1)ner/α so an erasure is then ‘equivalent’ to (α − 1)/α errors.

The simplest interpretation of this case is that the length n of these words is
reduced in the average by the factor 1 − per. The largest information quantity that
a word of length n can bear, n log2 (α) Sh, is thus reduced in the average by the
occurring erasures to (1 − per)n log2 (α).

5.4.4 Largest Minimum Distance of Error-Correcting Codes

No explicit means for designing a code with the largest possible minimum distance
d is known in general. However, asymptotically for n approaching infinity, random
coding arguments show that the largest possible minimum distance of a code is at
least equal to the Gilbert-Varshamov bound dGV, defined in the binary case by the
implicit equation in dGV/n:

1 − k/n = H2(dGV/n), (5.9)

where the binary entropy function H2( ·) has been defined in Eq. (4.11). Only the
increasing branch of this function is relevant, since the largest minimum distance is
obviously a decreasing function of the code rate R = k/n: the more numerous the
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codewords, the smaller this distance. This remark implies dGV < n/2. For instance,
if we assume that k = n/2, dGV is very close to 0.11 × n. Notice that the left hand
side of Eq. (5.9) measures the redundancy of the code and that H2(·) is an increasing
function when its argument is smaller than 1/2, so the larger the redundancy, the
larger dGV, as expected. For a very redundant code, i.e., when k/n approaches 0,
dGV tends to n/2. Since it is dGV/n which is specified by Eq. (5.9), the Gilbert-
Varshamov distance is proportional to the code length n. Taking it as a figure of
merit shows that an error-correcting code is the better, the longer.

For a code of alphabet size α > 2, the Gilbert-Varshamov bound becomes the
solution of the implicit equation:

1 − k/n = Hα(dGV/n) + (dGV/n) logα (α − 1), (5.10)

where

Hα(x) = −x logα (x) − (1 − x) logα (1 − x) = H2(x)

log2 (α)
.

Notice the presence in Eq. (5.10) of the additive term (dGV/n) logα (α − 1) which
cancels for α = 2. For k/n approaching 0, dGV/n approaches (α − 1)/α, a result
easily deduced from Eq. (5.10).

5.4.5 General Case: Feinstein’s Lemma

Up to now, we just gave the sketch of a proof of the fundamental theorem of channel
coding for the binary symmetric channel and the binary erasure channel, which are
both very simple examples. We now intend, for the sake of completeness, to state
without proof a much more general result which is used for proving the fundamental
theorem of channel coding. The simple case of the binary symmetric channel may
be thought of as a particular instance of a general result named Feinstein’s lemma.
Assuming a stationary and ergodic source and a discrete stationary channel with finite
memory, it states that a one-to-one correspondence between the typical sequences
in the sense of the Shannon-McMillan theorem (see Sect. 4.3.5) and asymptotically
disjoint sets of points in the space of the output sequences can be established pro-
vided the source entropy is less than the channel capacity, when the sequence length
approaches infinity. The ‘error spheres’ in the case of the binary symmetric channel
are mere examples of such asymptotically disjoint sets of points in the channel output
space. (The proof of Feinstein’s lemma is rather difficult and implies lengthy math-
ematical developments, so we omit it.) The statement of the fundamental theorem
of channel coding then results from the lemma in a straightforward manner: observ-
ing the channel output enables uniquely identifying the channel input sequence if it
belongs to the set of typical sequences. If it does not, an event of vanishingly small
probability according to the Shannon-McMillan theorem, a specific distinguishable
sequence is transmitted in order to warn the destination that an atypical sequence
occurred.
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5.5 Error-Correcting Codes

5.5.1 Defining an Error-Correcting Code

An (n, k, d) binary error-correcting code, with k < n, has been defined in Sect.
5.4.1 as a subset of all n-bit long sequences or n-tuples), containing 2k elements
and such that a minimum Hamming distance of at least d > 1 exists between any
two of them. The condition k < n expresses that this code is necessarily redundant.
Once n and k are chosen, d cannot assume arbitrary values: the largest possible
minimum distance of such a code, which is in general not explicitly known, exceeds
the Gilbert-Varshamov bound dGV introduced in Sect. 5.4.4 but is probably only
slightly larger than it. In geometrical terms, we may think of the n-dimensional
Hamming space as the set of all n-bit sequences where a distance between them
is defined by the Hamming metric as introduced in Sect. 5.4.1. The existence of a
minimum distance d between the codewords is intended to make them as different
as to enable discriminating between them if the number of channel errors is low
enough. We stated above that the optimum decoding rule is to ‘choose the codeword
the closest to the received word for the Hamming distance’. As a consequence, if less
than d/2 channel errors occurred, the actually transmitted codeword can be identified
with absolute certainty. This does not entail that a decoding error necessarily occurs
in the event of more than d/2 channel errors, however, but that the probability of such
an error conditioned on t channel errors becomes strictly positive when t becomes
larger than d/2, while it is exactly 0 when t < d/2. This is especially true for very
redundant codes, i.e., where the codewords constitute a very sparse minority among
the n-tuples. For instance, if we let k approach 0, the Gilbert-Varshamov bound of the
minimum distance results in dGV approaching n/2. If this distance is achieved, then
two codewords can be distinguished with absolute certainty only if their distance
is less than n/4. However, correct decoding is possible in many instances where
their distance is larger than that. As an example, the capacity of a binary symmetric
channel of symbol error probability psu, as given by Eq. (5.2), approaches 0 when psu

approaches 1/2. According to the fundamental theorem, this means that all symbols
errors can be corrected if they occur with a probability up to about 1/2 provided the
code rate R = k/n vanishes. If no more than n/4 error patterns could be corrected
in this case, the limiting value of the error probability would be psu = 1/4 and not
psu = 1/2. It is indeed possible to design codes which correct errors occurring with
a probability larger than 0.25 (of course, less than 0.5). Then only the rarity of the
codewords among the n-tuples is relevant, and the minimum distance between them is
comparatively unimportant. This rarity is indeed the key factor why error-correcting
codes are efficient and it is why the codewords are distant from each others. We may
define the ‘dilution factor’ of a code as the ratio of the number of codewords to the
number of n-tuples, namely, 2−(n−k) = 2−n(1−R). The code is the better, the smaller
this figure. As in the discussion of the Gilbert-Varshamov bound, we find that a code
is the better, the larger its length n and the smaller its rate R = k/n. Assuming
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its parameters n and k to be given, designing a good code aims at spreading the
codewords as evenly as possible within the set of n-tuples.

During decades, the only criterion for designing an error-correcting code has been
to maximize its minimum distance. The theory of algebraic codes entirely relies on
this criterion. We questioned this criterion and suggested instead that codes should be
designed in order to make their distance distribution mimic that which results in the
average from random coding (Battail 1989). We proposed as a proximity criterion
the Kullback-Leibler divergence, as defined in Sect. 4.2.6, between the normalized
distance distribution of a code and that of random coding. We referred to codes
designed according to this criterion as ‘random-like’. Questioning the minimum
distance criterion, become with time a kind of dogma, was deemed heretical by
many. However, the invention of turbocodes and the rediscovery of Gallager’s low-
density parity-check codes, a few years later, blatantly showed that the codes with the
best actual error correction performance were not designed so as to maximize their
minimum distance. The proximity of their distance distribution with that of random
coding was established (Battail 1993, 2000; Battail et al. 1993). The minimum
distance of these best codes remains most often unknown.

From a geometrical point of view, a word of a random-like code has few closest
neighbours in the Hamming space so the performance of these codes mainly relies on
this scarcity. If the minimum distance of a random-like code is comparatively small
an ‘error floor’ results, meaning that the improvement in decoding error probability
due to the code varies much slower for large values of the signal-to-noise ratio than for
smaller ones, because the performance is then dominated by the closest neighbours.
Turbocodes exhibit this phenomenon but the floor decoding error probability is low
enough for most applications.

5.5.2 Using Error-Correcting Codes: Decoding and Regeneration

We already met communication by means of an error-correcting code so the function
of encoding has become familiar to us. Let us just recall that encoding, for an
(n, k) code C, with n > k, consists of establishing a one-to-one correspondence
between the set of k-bit information messages and a set of n-bit words, or code,
containing 2k codewords. The code may be interpreted as a list of pairs (information
message—codeword), whether such a list is actually used, or not, in order to perform
the encoding. Encoding may thus be performed by merely reading a codeword at
a specified address in a memory. The critical step of an encoded communication is
met at the receiving end: dealing with a codeword received in the presence of symbol
errors.

Processing a codeword received in the presence of errors in order to recover
the transmitted one is referred to as decoding. It involves two steps. The first
one is intended to determine the most likely transmitted codeword, or point in the
Hamming space Sn according to the geometrical description of an error-correcting
code proposed in Sect. 5.4.1, given the received word or point. The success at this
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step is a chance event which implies a risk of wrong recovery. In communication
engineering, the ultimate goal of this processing is the recovery of the encoded
information message. Once the algorithm which performs the first step results in
designating a codeword (right or wrong), the second step is thus intended to recover
the information message which corresponds to it. It may be implemented by just read-
ing the proper entry in the list of the codewords and is basically deterministic. The
first step is the critical one in the whole decoding process and, at least when applied
to a genomic error-correcting code, it will be referred to as regeneration. Contrary to
the encoding process which is intrinsically simple, decoding is by far more difficult
because its first step, regeneration, involves making hypotheses and comparing their
results. Still more important than designing good codes, devising efficient decoding
algorithms has been a major goal in the research about error-correcting codes.

If it is restricted to its first and crucial step, i.e., regeneration, the reception process
no longer results in delivering an explicit information message, but in making the
encoded sequence as a whole resilient to casual errors. Regeneration fails with a
very small probability if the error-correcting code is well fitted to the channel. In
the presence of symbol errors of constant probability per time unit, performing
repeated regenerations at short enough time intervals then results in the almost sure
conservation of this sequence during very long times. We examine at length in the
second part how error-correcting codes can ensure by this means the conservation of
genomes by means of repeated regenerations. Then the information message remains
always hidden: only making the recovered genome identical to the original one is
relevant.

5.5.3 Designing Error-Correcting Codes

As an important application of information theory to communication engineering,
which moreover posed difficult problems to researchers, error-correcting codes gave
rise to a plentiful literature. We shall give only a short account of it, restricted to the
most successful code family which however remained unnoticed, at best marginal,
during decades. We refer to this family as random-like codes. We entirely omit the
algebraic codes which have long been the main research topic in the field (just using
a simple Hamming code which belongs to this family in examples). It is not easy
to explain the operation of algebraic codes which rely on advanced mathematics,
and the codes which most closely approach the theoretical limit were designed by
very different methods. Let us just say that the aim of researches about algebraic
codes was to find codes having the largest possible minimum Hamming distance, at
variance with the codes most closely approaching the channel capacity which can
be interpreted as attempting to mimic random coding. We thus first examine how
random coding could be implemented and look for non-random coding methods
having a similar result.

Implementation of random coding in order to design a binary (n, k) code would
first consist of establishing once and for all a list of 2k n-bit codewords. Each bit of a
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codeword is chosen at random, with probability 1/2, independently of the other bits of
the word, and the other codewords are similarly obtained independently of the others.
A one-to-one correspondence is established between the words of the list and the k-bit
information messages, such a message being used as the address of a codeword in the
list. Then, encoding a k-bit information message merely consists of reading a single
entry of the codeword list at the appropriate address. Decoding, however, is highly
impractical since a received sequence, consisting of a codeword affected by symbol
errors, does not generally belong to the codeword list. There is no other decoding
means than comparing each received sequence with all the 2k n-bit codewords in
order to determine which of them is the closest to it (according to the optimum rule
stated in Sect. 5.4.1). For large values of k (good performance demands numerous
codewords hence k should be large) 2k is huge: decoding becomes so complex that
it is practically impossible. If random coding is an outstanding theoretical tool, it
cannot be used in practical instances.

However, the performance of an error-correcting code is determined by the set
of distances between its words, not by the way it is generated. If a code is defined
by a non-random rule such that the distance distribution of its words closely mimics
that of random coding, its performance is close to that of random coding but its
decoding can be made far simpler. This is the rationale of the search for such de-
terministic, random-like codes. (Both the concept and name of ‘random-like codes’
were introduced by me (Battail 1996) and are not of general use.) Random-like codes
were sought without special consideration to their minimum distance, but a distance
distribution identical to that of random coding implies a minimum distance which
satisfies the Gilbert-Varshamov bound (5.9). The family of random-like codes mainly
contains the turbocodes invented by Berrou and Glavieux in 1993 and the low-density
parity-check codes, invented much earlier by (Gallager 1962) but rediscovered and
recognized as achieving an outstanding performance only after the turbocodes were
disclosed.

5.5.4 Recursive Convolutional Codes

Before dealing with turbocodes, we first consider their main components, namely, the
recursive convolutional codes. We just describe how they are generated, from which
we derive their main properties. We already met a recursive convolutional encoder
since the example of an encoder given in Sect. 3.4.2 and illustrated by Fig. 3.4 is
actually of this type. The main component of such an encoder is its rate-1 encoder
which generates the redundancy sequence, or check sequence, to be appended to the
information message so as to constitute an error-correcting code. The slightly more
complicated example of Fig. 5.4 below represents a rate-1 encoder similar to that
of Fig. 3.4 but having a memory μ = 3 instead of μ = 2. It will be helpful for
understanding the properties of the sequences generated by recursive encoders.

We always assume that the initial content of the binary shift register memories is
all-zero. For dealing with binary sequences, we introduce a convenient formalism,
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u(D)

c (D)

+

+

+ +

Feedback

Fig. 5.4 Example of a rate-1 encoder with memory μ = 3. The input u(D) and the output c(D)
represent the information message and the corresponding check sequence, respectively, in terms of
the delay operator D. Each point may assume one of two states, denoted by 0 and 1. The elements
drawn as half-circles are delay operators (of an information bit duration); they form together a
shift register, and + denotes addition modulo 2. This encoder is referred to as ‘recursive’ because it
involves a feedback

referred to as the ‘D-transform’, according to which a sequence of finite length is
represented by a polynomial where the indeterminate, say D, may be interpreted as
a delay of one bit duration with respect to some origin of time; D is thus referred
to as ‘delay operator’. The coefficients of the polynomial represent the symbols of
the sequence; they are elements of the binary field, denoted by 0 and 1 and endowed
with addition modulo 2. As in the ordinary algebraic notation, only the terms with
a non-zero coefficient are explicitly written. For instance, the binary sequence 1101
is represented by 1 + D + D3, 0011 is represented by D2 + D3, etc. Notice that,
due to the fact that the bit 0 is not explicitly written, these polynomials represent
the written sequences up to an arbitrary number of bits 0 appended to them. This
dissymmetry between 0 and 1 results from the usual assumption that the registers
are initially in the all-0 state, so the occurrence of bits 1 means a departure from the
initial state. The representation of sequences by polynomials extends immediately to
the case of an infinite number of terms, polynomials then becoming ‘formal series’.
We will meet sequences with infinitely many symbols (although, of course, they
need to be truncated in any practical situation) and formal series will be useful for
denoting them. As an example, the formal series 1+D+D2+. . . represents the all-1
sequence (starting from the origin of time). Any polynomial in D can be interpreted
as the infinite series which results from appending infinitely many bits 0 to the finite
sequence they represent. For instance 1, interpreted as a formal series, represents a
single bit 1 followed by infinitely many bits 0.

The number of bits 1 in a sequence is referred to as its weight. The encoding
performed by a device like that of Fig. 5.4 is referred to as linear in the mathematical
meaning of the word: it involves only additions and multiplications in the binary
field, i.e., additions modulo 2 and multiplications by 0 (no connection) or 1 (connec-
tion). Restricting the considered codes to linear ones does not significantly restrict
generality but provides a great simplification. The all-0 word belongs to any linear
code and it is generated in response to the all-0 information message. It is easily
shown that the set of distances between all the sequences that a linear encoder can
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generate is the same as the set of their weights, i.e., of their distances with respect
to the all-0 word. The operation of a communication system over the binary sym-
metric channel involving linear encoding can thus be studied assuming that the all-0
sequence is transmitted. Then, the only bits 1 in the received sequences result from
channel errors, and those in the decoded sequences from an erroneous recovery. We
study the weight properties of the sequences generated by rate-1 encoders so as to
understand the distance properties of the recursive convolutional codes, the main
components of turbocodes.

We use a polynomial N (D) in the indeterminate D in order to represent how
the output is computed as the sum modulo 2 of bits contained in the shift register.
The coefficients of N (D) are 1 or 0, depending on the output of the memory cell
corresponding to the degree of the indeterminate being connected or not to the modulo
2 adder which computes the encoder output. For instance, N (D) = 1+D2 +D3 for
the encoder depicted in Fig. 5.4. Similarly, a different polynomial Q(D) specifies
the recursion bit, where the coefficients are 1 or 0, depending on the output of the
corresponding memory cell being used or not to compute the recursion bit fedback
to the register input (Q(D) = 1 + D + D3 for the encoder depicted in Fig. 5.4). We
moreover assume that the degree of both polynomials N (D) and Q(D) equals the
register memoryμ and that both polynomials are irreducible, i.e., cannot be expressed
as a product of polynomials. Then the sequence generated by the encoder made of
the shift register with its feedback determined by Q(D) and its output computed
according to N (D), provided the initial state, i.e., the content of all the memory cells
of the register, is all-0 at the origin of time, is represented by:

c(D) = u(D)
N (D)

Q(D)
, (5.11)

where u(D) represents the input (information sequence) and c(D) the output (check
sequence). For instance, if u(D) = 1, i.e., if the input sequence consists of a single
bit 1 at the origin of time followed by infinitely many bits 0, the encoded sequence
is represented by

c(D) = N (D)

Q(D)
.

Since Q(D) does not divide N (D), this fraction can be expanded into a formal series
with infinitely many non-zero terms. The generated sequence has thus an infinite
weight. For instance, we have in the above example:

c(D) = 1 + D2 + D3

1 + D + D3
.

The reciprocal of the polynomial Q(D) is the formal series

1

1 + D + D3
= 1 + D + D2 + D4 + D7 + D8 + D9 + D11 + D14 + · · ·

where the right hand side is periodic (the period in this example is the largest possible
with a shift register of memory μ = 3, namely 23 − 1 = 7), and its multiplication
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by 1 + D2 + D3 results in

c(D) = 1+D+D4+D5+D6+D8+D11+D12+D13+D15+D18+D19+D20+· · ·
which is also 7-periodic beyond the first two terms. Then the periodically repeated
motif has weight 4.

For a shift register of memory μ, the length of the periodically repeated motif is at
most 2μ − 1, in which case its weight is 2μ−1. It is obtained if the polynomial Q(D)
which describes the feedback is ‘primitive’1; there always exists at least a primitive
polynomial of any degree μ. In this case, the content of the register successively
represents in binary numeration all possible μ-bit nonzero integers from 1 to 2μ − 1
(in an order which depends on Q(D)) and we get a ‘maximum-length’ sequence, of
the longest possible period that can be generated by a register of length μ, namely
P = 2μ −1. Then Q(D) is a factor in the decomposition of 1+D2μ−1 as a product of
irreducible polynomials. In the example of Fig. 5.4, one easily checks that 1+D7 =
(1+D +D3)(1+D2 +D3)(1+D) (do not forget that the coefficients are computed
modulo 2), where both 1+D +D3 and 1+D2 +D3 are primitive. It turns out that a
sequence thus generated by a shift register endowed with a proper feedback, when μ

is large, mimics in some sense a binary sequence generated at random and therefore
is referred to as pseudo-random. Such sequences are currently used instead of truly
random sequences in simulations intended for instance to assess the performance of
communication systems. Long pseudo-random sequences can moreover be obtained
by combining several sequences of shorter period generated by small-memory shift
registers.

Due to its feedback, a recursive rate-1 encoder delivers infinite-weight sequences
in response to certain finite-weight ones, especially of weight 1, which would be
impossible without a feedback. A sequence generated by a rate-1 encoder is how-
ever not directly useful for correcting errors. There is a one-to-one correspondence
between the input and output sequences, and any change in the output sequence
would result in a sequence which can be generated by another input sequence. Re-
member that an error-correcting code is necessarily redundant, which is not the case
for the set of sequences generated by a rate-1 encoder. It is why the full encoder of
Fig. 3.4 appends the input sequence to the check sequence generated by the rate-1
encoder, resulting in a rate-(1/2) code which can actually correct errors. An encoder
like this one, where the information message is a part of the output, is referred to
as systematic. Then, the full encoded sequence, made of the serial combination of
the information message and the check sequence delivered by the rate-1 encoder,
has as weight the sum of their weights. When the check sequence has an infinite
weight, there is an infinite distance between the whole encoded sequence and the
all-0 sequence, hence no decoding error is possible. The check sequences generated
by the rate-1 encoder have most often an infinite weight (actually limited in practice
by its truncation to a finite arbitrary value) since only a fraction 2−μ of the infor-
mation messages result in finite weight encoded sequences (Battail et al. 1993). For

1 A polynomial of degree μ is said to be primitive if taking the successive powers of one of its roots
generates all the 2μ − 1 non-zero elements of the μ-th extension of the binary field.
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randomly chosen information messages, we may interpret the fraction 2−μ as the
probability that a finite weight sequence is generated by the encoder.

The solution to the problem of errorless communication seems then obviously
to use a recursive systematic convolutional encoder with a large memory μ so as
to almost always generate infinite weight sequences. Unfortunately, the complexity
of decoding varies as 2μ, which severely limits the possible values of μ hence the
practical usefulness of such encoders. Excellent distance properties can however be
obtained if several short encoders are combined according to the turbocode scheme,
to be described in the next section. Performance close to the theoretical limit can be
obtained by this means with only two combined registers. It turns out moreover that
turbocodes can be almost optimally decoded with fairly low complexity, as will be
shown in Sect. 5.5.9.

The requirement that the initial state of the shift register be zero implies that means
for controlling the initial state are employed. For instance, a termination made of
μ properly chosen bits may be appended to an N -bit information message so as to
make the register content return to the zero state. Another solution to the register
initialization problem consists of choosing a nonzero initial state such that the same
state is reached after an N -bit message has been fed to the register, resulting in a
‘tail-biting’ convolutional code. The initial state needs then to be pre-computed in
terms of the message. This is a smart solution to the problem of initializing both
component encoders of a turbocode (see next section).

5.5.5 Turbocodes

The basic idea of turbocodes is to encode twice the information message, firstly as
it is and secondly after it has been scrambled by an interleaver. Both encodings are
performed by systematic recursive convolutional encoders like that of Fig. 3.4; their
rate-1 encoders may be identical or different and both have a same memory μ of
moderate value, e.g., μ = 3 as in Fig. 5.4. Due to its feedback, each of the rate-1
encoders generates sequences of weight tending to infinity as the message length
increases, except for small-weight sequences generated by a fraction 2−μ of all the
input sequences. Thanks to the interleaver, the fraction of input sequences which
eventually result in an overall transmitted small-weight sequence, interpreted as a
probability, becomes 2−2μ and thus becomes negligible for values of μ remaining
as small as to keep the decoding complexity reasonably low.

The basic scheme for generating a turbocode is represented in Fig. 5.5. It combines
two2 convolutional systematic recursive encoders with an interleaver. The rate-1
encoders have been defined in the previous section. An interleaver of length N is
a device having sequences of length N as input and output, such that the output
contains the same symbols as the input but in a different order. If its input sequence

2 Or more, but then some specific difficulties are met; two-component codes suffice for obtaining
results close enough to the theoretical limit for most practical purposes.
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Fig. 5.5 Encoder of a rate-1/3
turbocode. The blocks
labelled ‘Rate-1 enc.’ desig-
nate rate-1 encoders as
represented in Fig. 5.4. The
block labelled 
 represents
the interleaver which imple-
ments the permutation 
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Rate-1 enc. 2
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u (D)

(D)

(D)

(D)

is u1, u2, . . ., uN , where ui is an element of some alphabet, for instance the binary
one, its output is uj1, uj2, . . ., ujN

, meaning that the ji-th element of the input sequence
became the i-th in the output sequence. An interleaver 
 is completely defined
by a set of N different indices {ji , 1 ≤ ji ≤ N , i = 1, 2, . . ., N}. For example, an
interleaver of length N = 7 defined by the set of indices {3, 6, 1, 2, 7, 5, 4} transforms
the word 0101100 into 0001011 and the word 1101011 into 0111110. The encoders
currently used in turbocodes have a small memory (e.g., μ = 3) but, unlike the
above example, the interleaver length N is long (say, a few thousands of bits),
so there are as many possible interleavers as permutations of N objects, namely,
N ! = 1 × 2 × . . . × (N − 1) × N , a huge number for the usual values of N . When
operating on some sequence u(D) (represented by a polynomial of degree N − 1 in
the indeterminate or delay operator D as defined in Sect. 5.5.4), the interleaver 


transforms it into 
[u(D)]. The device which recovers any u(D) from its interleaved
version 
[u(D)], often referred to as the de-interleaver, is another interleaver of
length N , to be denoted by 
−1, such that 
−1{
[u(D)]} = u(D).

The encoder which generates a turbocode operates as follows. The input sequence
of length N , represented by the polynomial u(D) of degree N − 1, is also one of its
output sequences since it is systematic. At the same time, each of two recursive rate-1
encoders like that of Fig. 5.4 computes check bits. These encoders may be identical
to each other, or not. One rate-1 encoder is fed directly by the input sequence and the
check sequence it generates is denoted by c1(D), while the other one is fed by the
output of the interleaver, the input of which is the information sequence u(D). The
check sequence it generates is denoted by c2(D). This basic scheme has inherently
a rate of 1/3, but several tricks can be used so as to obtain higher rates (the most
usual of them, referred to as ‘puncturing’, consists of suppressing a fraction of the
generated check bits according to a given periodic pattern). Considering the case
of a rate-1/3 turbocode will however suffice to understand the turbocode principle
so we do not consider other rates. We denote the output of this rate-1/3 encoder by
[u(D), c1(D), c2(D)]. It is a sequence of length 3 N , the weight of which is the sum of
the weights of u(D), c1(D) and c2(D). The encoder output in Fig. 5.5 is represented
in ‘parallel’ but in practice the encoder would generally involve a conversion into a
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‘serial’ representation, consisting of successively transmitting the three binary out-
puts at thrice the frequency of the information bits. Most often, one of the sequences
c1(D) and c2(D) at least has large weight (i.e., infinite would no truncation occur),
thus avoiding any decoding errors. The probability that [u(D), c1(D), c2(D)] has a
small (i.e., finite) weight is 2−2μ which results in a small enough probability of a
decoding error in most practical cases.

To summarize, the interest of the turbocode scheme is that its weight distribution
is close to that of random coding, hence intrinsically good, while its almost optimum
decoding is comparatively easy, as will be shown in Sect. 5.5.9.

5.5.6 Low-Density Parity-Check Codes

The low-density parity-check (LDPC) binary codes are defined by a number of parity-
check equations, each involving only a small number of information and parity-check
bits. At least two information bits and one parity-check bit are randomly associated in
each parity-check equation. A parity-check equation expresses that the sum modulo 2
of certain bits equals 0 (equivalently, that the number of ‘1’s in it is even). Parity-check
equations are standard means for expressing constraints in binary coding.

For instance, an LDPC code is defined by a set of parity-check equations involving
each two information bits and a check bit (the minimum possible values) as follows:

ia ⊕ ib ⊕ cu = 0 (Cu) (5.12)

ia ⊕ ic ⊕ cv = 0 (Cv)

. . . . . . . . . . . . . . . . . . . . .

where ia , ib, ic, . . . denote three arbitrary information bits, cu, cv, . . . denote check
bits associated with information bits according to the parity checks labelled (Cu),
(Cv), . . ., and ⊕ denotes addition modulo 2. The parity-check equations may be quite
numerous, and they are so for a long code. We assume that each information bit is
checked by at least two of these equations.

One may interpret LDPC codes as actually implementing random coding, but by
establishing at random parity-check equations instead of a list of codewords. That
each of them involves only a few information bits makes their separate decoding easy,
and the reliability assessment about the information bits acquired by the decoding
of a parity-check equation helps decoding the other ones, thanks to the decoding
process using soft decisions to be expounded in Sect. 5.5.8 and its iteration. It turns
out that combining in the parity-check equations a small number of bits, as small
as to make decoding tractable, still results in an overall distance distribution of the
code which mimics that of random coding properly said (Battail 2000).

The LDPC codes are extremely flexible since further constraints can be added at
will. It will be clear moreover in Sect. 5.5.8 that their decoding does not demand that
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all constraints are accounted for. The key to their efficient decoding is symbol-by-
symbol decoding with an entirely analog processing aimed at reassessing the symbol
probabilities.

5.5.7 Decoding Random-Like Codes: Principles

We deal here only with the decoding of turbo- and LDPC codes. We already noticed
that these codes may be interpreted as endowing the set of sequences generated by
the encoder with a distance distribution close to that which results in the average
from random coding. A further reason of their interest, which is not the least, is that
they lend themselves to almost optimal decoding, which moreover is comparatively
simple.

Decoding relies on the same general principles for both code families. We
first redefine the very function of decoding according to the following two points
(Battail 1987b). Both contradict the principles which were earlier in force: decod-
ing was intended to determine codewords, not separate symbols, which made ‘hard
decisions’ mandatory since a codeword is a sequence of alphabet symbols. When
researches about coding began, it was not realized that hard decisions imply a pro-
hibitive information loss, and that word-by-word decoding of long codes is inherently
very complex. Algebra of finite fields was then the main framework, not probabil-
ities. In sharp contrast, the principles which underlie the decoding of random-like
codes are:

1. Decoding deals with a single symbol at a time: it is intended to find the most
likely transmitted symbol at a particular location in a word, not the most likely
transmitted codeword. This is referred to as symbol-by-symbol decoding. Notice
that doing so does not comply with the optimum word-by-word decoding rule
stated in Sect. 5.4.1.

2. Such decoding does not merely consist of determining the most likely transmitted
symbol, but of assessing for each received symbol the probabilities that each of
the alphabet symbols has been transmitted, in terms of all the received symbols
(the one to be decoded as well as the others) and taking the code constraints into
account. It is thus intended to take soft decisions according to the vocabulary
introduced in Sect. 3.3: it deals with analog data, which in the binary case are the
log-likelihood ratios defined by Eq. (3.8), not with the discrete symbols of the
alphabet.

The interest of doing so is that provisional ‘decisions’ (actually, probability
assessments) about some bits can be made, accounting for only some of the cod-
ing constraints. Since these provisional decisions do not incur in principle any
information loss, further taking into account other constraints becomes possible.
Then decoding a large and complex code can be split into a number of lossless
decodings of elementary component codes. We noticed in Sect. 3.3 that hard de-
cisions should be avoided unless they are absolutely necessary because they entail
an irreversible loss of information. The decoding process of turbo- or LDPC codes
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involves soft decisions throughout. This kind of decoding is usually referred to in the
engineering literature as ‘soft-input, soft-output’ (abbreviated as SISO) decoding.

We begin with expounding how to decode a binary LDPC code. The constraint ex-
pressed by one of its parity-check equation enables first reassessing the log-likelihood
ratio of an information symbol it contains in terms of the a priori log-likelihood ra-
tios of all its other symbols. Considering another parity-check equation containing
the same information symbol, its reassessed log-likelihood ratio improves the re-
assessment of the log-likelihood ratio of the other information symbols it contains.
Repeating this process enables reassessing the log-likelihoods of all the informa-
tion symbols according to a kind of oil stain effect. Not only this process can be
repeated until all the parity-check equations have been taken into account, but it
can be iterated: the log-likelihood ratios improved in a previous decoding step are
used to still improve further ones. For this process to work, however, care must be
taken for avoiding ‘self reinforcement’of the log-likelihood ratios. This will be better
understood after how log-likelihood ratios are reassessed is more formally described.

5.5.8 Decoding an LDPC Code

We do not describe here the decoding process of LDPC codes as originally expounded
by (Gallager 1963), but we rather use the concepts and vocabulary of replication de-
coding (Battail and Decouvelaere 1976; Battail et al. 1979), which may be interpreted
as a variant of Massey’s threshold decoding (Massey 1963) such that the threshold
is systematically set to 0, and of iterative decoding. We believe that these concepts
are well fitted to an intuitive understanding.

Replication decoding turns the redundancy due to encoding constraints into
explicit repetition, thereby transforming decoding into ‘diversity reception’, an
intuitive method for improving reception known by radio engineers well before
error-correcting codes were invented and thus validated by a many-year experience.
It is based on the fact that two or more unreliable copies of a same signal can be
combined into a single one which is more reliable than each of them separately. Let a
bit be transmitted over two independent binary symmetric channels and let �1 and �2

denote the log-likelihood ratios associated with their respective outputs, referred to
as a priori. It can easily be shown (by a direct computation or by applying Kullback’s
principle; see Sect. 4.2.6) that a decision jointly based on both channel outputs, i.e.,
the most likely assumption as regards the transmitted bit given �1 and �2, has as a
posteriori log-likelihood ratio the sum �̂ = �1 + �2. This result extends immediately
to an arbitrary number n of replicas:

�̂ =
n∑

i=1

�i. (5.13)

The additivity of the log-likelihood ratios of independent replicas can be thought of
as the main reason why they are useful. It is easily shown that the reliability |�̂| is
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larger in the average than that of the individual replicas, meaning that the reliability
of the binary decision associated with the sign of �̂ is improved. We moreover recall
that, in the presence of additive white Gaussian noise, the log-likelihood ratio of any
received bit is immediately available as proportional to the output of the receiver
matched filter (see Sect. 3.3). Decoding then can directly process this analog output.

Would the log-likelihood ratios of the replicas not be available, but only their
binary values, replacing the binary symbol 0 by +1 and 1 by (−1) would define ‘false’
log-likelihood ratios {�′

i} (the magnitude of which no longer measures a reliability)
which may be used instead of {�i} in the decision rule (5.13), resulting in a hard
decision equivalent to majority voting: the sign ± of the sum meaning the binary
symbol 0 or 1; in the case where this sum is 0, which can occur only if the number
of replicas is even, the two binary symbols are equally probable and the result can
be chosen at random. Assigning values ±1 to given binary symbols is moreover a
means to measure the relative reliability of intermediate decisions. Then the module
of a log-likelihood ratio no longer provides an absolute estimate of the reliability of a
decision, but a decision is still the more reliable, the larger is its log-likelihood ratio.

Let the LDPC code to be decoded be that described in Sect. 5.5.6, obeying the set
of parity-check equations Eq. (5.12). Let us consider the first of them, labelled (Cu).
Solving it with respect to ia results in:

ia = ib ⊕ cu, (5.14)

which shows that ib ⊕ cu is a replica of ia . Two replicas of ia are thus available, and
they are independent as involving different bits transmitted over a channel assumed
memoryless, hence where errors separately affect each symbol. We refer to ia as the
trivial replica and to any combination of other bits equal to ia in the absence of error,
like ib ⊕ cu above, as a compound replica.

Applying the decision rule (5.13) to these two replicas needs computing the log-
likelihood ratio of the sum modulo 2 of two received bits, say b1 and b2, of respective

log-likelihood ratios �(b1) and �(b2). Let pb1

�= Pr(b1 = 1) and pb2

�= Pr(b2 = 1).

The probability pb1⊕b2

�= Pr(b1 ⊕b2 = 1) equals pb1 (1−pb2 )+ (1−pb1 )pb2 , which
entails that

1 − 2pb1⊕b2 = (1 − 2pb1 )(1 − 2pb2 ).

In terms of the log-likelihood ratios, this equality becomes

tanh [�(b1 ⊕ b2)/2] = tanh [�(b1)/2] tanh [�(b2)/2],

where

tanh (x)
�= exp (x) − exp (− x)

exp (x) + exp (− x)
.

For brevity’s sake, we introduce the function t(·) �= tanh (·/2), which enables more
compactly rewriting the above implicit equality which expresses �(b1 ⊕ b2) as:

t[�(b1 ⊕ b2)] = t[�(b1)]t[�(b2)].
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This equality extends to the sum modulo 2 of an arbitrary number m of bits:

t[�(b1 ⊕ b2 ⊕ . . .)] =
m∏

i=1

t[�(bi)].

We also introduce the inverse function t−1(·) of t(·), i.e., the function such that
t−1[t(x)] = x, which explicitly reads

t−1(·) = ln

(
1 + ·
1 − ·

)

. (5.15)

Due to the additivity of the log-likelihood ratios of independent replicas, and using
Eq. (5.15) to express the log-likelihood ratio of the sum modulo 2 (5.14), we may
write the a posteriori log-likelihood ratio of ia with respect to the first parity-check
equation Cα as the sum:

�̂u(ia) = �(ia) + t−1{t[�(ib)]t[�(cu)]} (5.16)

where we use a caret for denoting an a posteriori log-likelihood ratio; the subscript
tells what parity check equations have been taken into account: a single one, namely
(Cu), in the above expression. This equality shows that �̂u(ia) consists of the sum
of the initial log-likelihood ratio �(ia) of ia , to be referred to as ‘intrinsic’, and an
‘extrinsic’ term which only depends on bits other than ia .

Since the second parity-check equation (Cv) also involves the information bit ia ,
we may use it for further improving the estimate of the log-likelihood ratio of ia . In
order to account for (Cv), we may replace the a priori log-likelihood ratio �(ia) with
�̂u(ia) which has already been improved by accounting for the parity check bit cu.
We thus obtain:

�̂u,v(ia) = �(ia) + t−1{[t[�(ib)]t[�(cu)]} + t−1{t[�(ic)]t[�(cv)]}. (5.17)

Again, this a posteriori log-likelihood ratio is the sum of the intrinsic a priori log-
likelihood ratio �(ia) and an extrinsic term which involves a larger number of received
bits.

The process of computing the a posteriori log-likelihood ratio can be extended to
all parity-check equations which involve ia and, of course, it can be used for similarly
reassessing the log-likelihood ratios of the other information bits ib, ic, . . .

Moreover, every time the log-likelihood ratio of an information bit is reassessed,
that it can improve the log-likelihood ratio estimates of other information bits en-
ables in turn further improving the estimate of its own log-likelihood ratio. Iterated
decoding thus becomes possible: the a posteriori log-likelihood ratio obtained using
some of the parity-chek equations (5.12) is substituted for the corresponding a priori
one in another parity-check equation before a new a posteriori log-likelihood ratio
is computed. This process may be repeated several times but its benefit decreases
with the number of iteration steps. When doing so, care should be exerted for avoid-
ing that the a priori (intrinsic) log-likelihood ratio of an information bit appears
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more than once in the expression of its a posteriori log-likelihood ratio. For lack of
this precaution, the condition that the computation of the a posteriori log-likelihood
ratios should involve independent replicas would be violated and would result in
meaningless values. How such an iteration is implemented will be expounded in the
next section.

5.5.9 Decoding a Turbocode

The name ‘turbocode’ coined by Berrou and Glavieux actually refers to the iterated
process used for decoding it, which resembles the way a turbo-compressed engine
uses its exhaust gas.

As for an LDPC code, the aim of decoding a turbocode is to reassess the log-
likelihood ratios of the information bits, given the a priori log-likelihood ratios of
the incoming bits and taking into account the constraints of the code. The reassessed
probabilities will be referred to as a posteriori probabilities. Such ‘soft-input soft-
output decoding’ (SISO) has been introduced above in Sect. 5.5.7. Decoding an
LDPC code as described in Sect. 5.5.8 was already of this kind. Then, we may think
of the decoding process as consisting of computing the a posteriori log-likelihood
ratio of each information symbol in terms of the a priori log-likelihood ratios of all the
received symbols. By a priori log-likelihood ratio, we now mean the log-likelihood
ratio known at some present stage of the decoding process, prior to further processing,
while an a posteriori log-likelihood ratio means that it resulted from taking into
account some constraints yet ignored, or somehow improving the way constraints
were accounted for.

The dependence between the encoded bits created by the rate-1 encoders of Fig. 5.5
is not as simple as that expressed by a parity-check equation since it involves the entire
past of the information message. Let us just mention that algorithms exist which,
similarly to Eq. (5.16), can exploit the encoding constraints in order to reassess
the log-likelihood ratios of the information bits: the soft-output Viterbi algorithm
(Battail 1987a, Hagenauer and Hoeher 1989) and the Bahl, Cocke, Jelinek and
Raviv (BCJR) algorithm (Bahl et al. 1974). These algorithms enable writing the
a posteriori log-likelihood ratio of any symbol, say �̂, similarly to Eq. (5.16), as
the sum of two terms, referred to as ‘intrinsic’ and ‘extrinsic’, respectively. The
first one, �in, is the a priori log-likelihood ratio of the symbol itself (which was
referred to as the trivial replica in Sect. 5.5.8). The second one, �ex, involves other
symbols through the constraints newly taken into account and can be interpreted as
the log-likelihood ratio of a ‘compound’ replica. The trivial and compound replicas
are independent as written in terms of disjoint sets of symbols. According to Eq.
(5.13) but with a simplified notation, the corresponding a posteriori log-likelihood
ratio of an information bit is thus the sum of the intrinsic and extrinsic log-likelihood
ratios:

�̂ = �in + �ex. (5.18)
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Fig. 5.6 Elementary SISO decoder. Its two inputs are the sequence of a priori log-likelihood ratios
of the information bits and that of the check bits, denoted by �in,inf and �in,ch, respectively. Its
three outputs are the a posteriori log-likelihood ratio of the information bits, �̂, its extrinsic log-
likelihood ratio �ex and the a priori log-likelihood ratio of the check bit which passes through the
device without change. All these quantities are analog and + denotes ordinary addition. The box
labelled ‘Reassess’ computes the extrinsic log-likelihood ratio �ex

We consider in the sequel elementary SISO decoders which implement the decoding
rule (5.18) and are organized as in Fig. 5.6. For interpreting this figure, it should be
kept in mind that the decoder outputs at a given instant actually depend on the past
input sequences of log-likelihood ratios.

Let us now assume that we have an optimum (or nearly optimum) decoding rule for
each of the two systematic codes (to be referred to as ‘component codes’) consisting
of the two check sequences generated by the rate-1 encoders of the turbo-encoder
each associated with the corresponding information sequence. Both information
sequences contain the same information bits and differ only as regards their order.
According to Eq. (5.18), we may write the a posteriori log-likelihood ratio of any
symbol which results from decoding the first code as:

�̂1 = �in + �ex,1, (5.19)

where �ex,1 only takes account of the constraints of the first code. The same infor-
mation symbol is present in the input sequence to the second encoder, at a location
determined by the interleaver operation. We may thus consider the a posteriori log-
likelihood ratio from the first decoder (fed by the check sequence generated by the
first rate-1 encoder) as the a priori log-likelihood ratio of this symbol for the decoder
which operates on the second component code, and write the decoding rule of this
symbol with respect to the second code:

�̂2 = �̂1 + �ex,2 = �in + �ex,1 + �ex,2, (5.20)

where the extrinsic log-likelihood ratio �ex,2 is computed in terms of a priori log-
likelihood ratios consisting of the a posteriori log-likelihood ratios delivered by the
first decoder. The second equality results from Eq. (5.19).

A very important fact is that the decoding process can now be iterated. Indeed,
once all the symbols have been decoded by the second decoder, we may think of the
a posteriori log-likelihood ratios from the second decoder as being improved esti-
mates which can be used as a priori log-likelihood ratios in the first one. However,
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Fig. 5.7 Decoding module (dashed box) for the turbocode of rate 1/3 generated by the encoder
of Fig. 5.5. Iteration results from cascading a number of such modules. Contrary to Fig. 5.5, all
the quantities considered are analog: the log-likelihood ratios �inf,i and �ch, of the information and
check bits, respectively, and extrinsic log-likelihood ratios as defined in the text, �ex,i, with i = 1
or 2. The boxes labelled ‘SISO dec.’ are identical to the elementary SISO decoder of Fig. 5.6. The
extrinsic log-likelihood ratio input is 0 in the first module, since then no extrinsic log-likelihood
ratio has yet been generated

the term �ex,1 in the a posteriori log-likelihood ratio as expressed by Eq. (5.20) has
already been calculated when the the first decoder was used, so it should be sub-
tracted from the log-likelihood ratios fed to it. Provided the extrinsic log-likelihood
ratio originating from a decoder is systematically subtracted3 from the a posteriori
log-likelihood ratio from the other one used as input to this decoder, as shown in
Fig. 5.6, the decoding process can in principle involve an arbitrary large number of
iteration steps. In practice it almost always converges, although expressing theoreti-
cal conditions of its convergence is very difficult. The number of iteration steps has
actually to be limited, and criteria for stopping the iteration as soon as a good enough
result has been obtained can be used. The complex task of decoding the turbocode
as a whole has been reduced to a succession of alternate decodings of the component
codes, each of which is easily performed.

As regards the implementation of the iterative decoding process, we may schemat-
ically think of cascading several decoding modules, each performing an iteration step.
One of these modules is represented in Fig. 5.7. Its inputs can be connected to the
outputs of the previous one, and its outputs to the inputs of the next one. Besides
SISO decoders for each of the component codes, this elementary decoder involves
an interleaver and a de-interleaver so as to ensure that both SISO decoders operate on

3 Failing to do so would increase the magnitude of the computed a posteriori real value without
improving its reliability; remember that the magnitude of a log-likelihood ratio is intended to
measure the reliability of the corresponding bit.
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Fig. 5.8 A geometrical interpretation of the iterated decoding of two combined codes of a tur-
bocode. Any point of the space represents the probability distribution of word components, initially
conditioned on the received signals and then resulting from soft-output decodings. The point rep-
resenting the optimally decoded codeword is denoted by S, the one which represents the received
word by R. The loci of the points satisfying the constraints of each of the combined codes C1 and
C2 are C1 and C2, respectively. By hypothesis, they both pass by S. The result of a first decoding
which only takes account of C1 is represented by D1, that of the second decoding, which only takes
account of C2, by D2, etc. The sequence of points D1, D2, D3, . . . tends to S as the number of
iteration steps increases

the same information bit. The a posteriori log-likelihood ratios of successive bits are
correlated due to the dependency created by encoding and, in particular, the errors of
each SISO decoder appear as bursts of decoded symbol errors. The interleavers used
in the decoding device spread out the a posteriori log-likelihood ratios (and their
possible errors occuring in a burst) before the sequence is fed to the other one, thus
ensuring that the successive input a priori log-likelihood ratios are uncorrelated, a
condition for SISO decoding being valid. This is also an important role of the inter-
leaver, besides that of shaping the overall weight distribution of the turbocode which
we already mentioned.

The iteration process can be given a very simple picture in order to illustrate
why it improves decoding (Fig. 5.8). We assume that we can define a space where
a probability distribution is represented by a point and where the closeness of two
distributions can be interpreted as the distance between the corresponding points
(this can be done using the concept of cross-entropy of two distributions introduced
in Sect. 4.2.6 above). Then the coding constraint of a code can be represented by a
subspace, say a line, and a probability distribution which satisfies the constraints of
both codes is represented by the point where the corresponding lines intersect. The
decoding firstly performed may be thought of as determining the point of the line
which represents the constraint of the first code the closest to the one which represents
the received point. To take account of the constraint due to the second encoding, we
must start from this point and determine the point on the second line the closest to it.
Since the second line only represents the constraint due to the second code, we must
again determine the point on the first line the closest to the lastly obtained one, etc.
After a sufficient number of iteration steps, a point close enough to the intersection of
the two lines is reached and almost optimum decoding of the two combined codes has
been performed. At variance with the figure, the two loci associated with the codes
have more than a single intersecting point. There are indeed as many intersecting
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Fig. 5.9 Diffusion of the dependence in the iterated decoding process. The lines labelled ‘Inf. seq.’
and ‘Interl. inf. seq.’ refer to the original information sequence and the one which results from its
interleaving, respectively, at the 1-st iteration step and the 1-st half of the second one, from top to
bottom. The points locate particular bits in the sequence. See the text for comments

points as codewords, so the convergence illustrated by Fig. 5.8 is merely a local
property.

We can also illustrate how the iterated decoding proceeds in the information
sequence with the help of Fig. 5.9. Remember that we interpreted the encoding as
a kind of indirect repetition, i.e., where an information bit is repeated as combined
modulo 2 with other information and check bits. Let us assume that this combination
only concerns the two neighbours of each information bit (the combination also
involves check bits which are not represented in the figure). The top horizontal line
represents the information sequence at the beginning of the first iteration step. We
consider the particular bit indicated by the vertical arrow at the top of the figure.
As assumed, the encoding by the first component code made it dependent on its
two neighbours. This means that, at the first half of the first iteration step (i.e.,
decoding in terms of the 1-st component code), the log-likelihood ratio of the bit
initially considered as well as those of its neighbours have been recomputed in terms
of their own a priori log-likelihood ratios and that of the corresponding checks
bits. The a posteriori log-likelihood ratios thus obtained are used as a priori log-
likelihood ratios for the second half of the first iteration step, which consists of
decoding the interleaved information sequence in terms of the second component
code. The arrows indicate the location of the interleaved bits. Due to the encoding by
the second code, the neighbours of each of these bits in the interleaved information
sequence have been made dependent and their a posteriori log-likelihood ratios have
been recomputed according to the second component code. At the first half of the
second iteration step, the information bits are again ordered according to the original
sequence, thanks to the de-interleaver operation. The bits initially considered have
recovered their original place, but the neighbours of the corresponding bits in the
interleaved sequence are located somewhere, generally far apart in the de-interleaved
sequence. Iteration consists of repeating this process. Clearly, there is a diffusion
of the dependence relationships through the entire information sequence, which
eventually makes any of the a posteriori log-likelihood ratio of an information bit
depend on increasingly many other ones in an increasingly more complex fashion.
We have a kind of ‘diffusion of the dependence’ as the decoding iteration proceeds
according to a kind of oil stain effect. Remember that, in the average, the decoding
process results in an increase of the magnitude of the a posteriori log-likelihood
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ratios, hence of the reliability of the decoding decisions. Even if the improvement is
small at the first iteration steps, a large number of steps eventually results in an almost
sure decision if the code rate does not exceed the channel capacity. We may think of
the decision involving each single bit as cumulating more and more information from
the remainder of the sequence of received bits as the iteration of decoding proceeds.

A similar representation of how the dependence relationships created by the en-
coding are successively used in the process of iterated decoding would be valid for
low-density parity-check codes, except that there is a single sequence of information
bits. Randomness is not provided by an interleaver, but by the random association
of the information bits in parity checks equations.

5.5.10 Variants and Comments

In the device represented in Fig. 5.7, we assumed that the a priori log-likelihood
ratios of the check bits pass through the elementary SISO decoders without change.
As represented in Fig. 5.6, these decoders only update the a posteriori log-likelihood
ratios of the information bits. However, the formulas which express the a posteriori
log-likelihood ratio of any received bit in terms of the a priori log-likelihood ratios
of all the received bits enable computing the a posteriori log-likelihood ratios of the
check bits, too. The choice of not doing so has the advantage of keeping samples
of the channel output throughout the iterated decoding process, to the benefit of its
stability, but schemes where both the log-likelihood ratios of the information and
check bits are updated can be contemplated.

The iterated decoding of turbocodes can actually be implemented quite differently
from the scheme of Fig. 5.7 since the same device may be used several times at a
speed greater than the input bit rate. Then the iteration can be implemented using a
single elementary decoder connected in a feedback loop.

We already stated that the information bits and the check bits, which appear as
separate outputs in the encoder of Fig. 5.5, are generally transmitted ‘serially’, i.e.,
in alternation according to a regular time pattern. Inspired by turbocodes, we suggest
the rather general scheme of Fig. 5.10 for representing a random-like code. Three
blocks are serially connected to each other: an n-replicator, an interleaver and a rate-1
encoder. Of course, each of these blocks results from a serial rearrangement of the
elementary components (memory cells, connections, . . .) of the corresponding blocks
of Fig. 5.5. Then, each of the blocks of Fig. 5.10 performs one of the three functions
which can be expected from a random-like encoder since they provide redundancy,
randomness and mutual dependence, respectively. We may thus think of Fig. 5.10
as describing a kind of paradigmatic random-like encoder. Moreover, it turns out
that some improvements can be obtained from variants of this scheme, especially if
the number of copies generated by the replicator is made irregular, some symbols
being repeated more than others while keeping the overall rate constant. The ease
of decoding demands however that the overall code can be decomposed into simple
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Input Output
n -replicator interleaver rate-1 encoder

Fig. 5.10 A fully serial schematic representation of an encoder of rate 1/n generating a random-like
code. The box named n-replicator designates a device which repeats n times its input symbol. The
interleaver scrambles the sequence it receives and the rate-1 encoder creates dependency between a
number of successive symbols. Among the three devices, only the n-replicator generates redundancy

component codes, so as to enable splitting the whole task of decoding into simple
alternate iterated decodings.

5.5.11 Error-Correcting Codes Defined by Non-Mathematical
Constraints: Soft Codes

The flexibility of LDPC codes, at least as regards their structure and decoding means,
makes them likely candidates to the yet unidentified genomic error-correcting codes
(which are shown to be needed in Sect. 8.1), except that mathematically defined con-
straints seem to be quite foreign to the living world. An error-correcting code needs
to be redundant and, in any practical system, this result is obtained by an encoding
rule which specifies constraints. In engineering, these constraints are mathemati-
cal, thus precisely defined and easily implemented by electronic devices. Any set of
constraints, however, similarly defines a subset among all the sequences of a given
length, hence a potential error-correcting code. Constraints of mathematical charac-
ter are obviously very convenient for human engineers, but a set of words is endowed
with error correction ability by any kind of constraints. In error-correcting codes of
biological origin, these constraints concern the support of symbolic sequences, e.g.,
the DNA molecule in the case of genomes, as well as the sequence of symbols itself.
The constraints on DNA molecules are of physical-chemical character and those
concerning the sequence of symbols may be of linguistic character, not necessarily
limited to mathematically defined equalities as the parity-check equations. Most of
them consist of exclusion rules which forbid certain symbol sequences. Restricting
the possible sequences to some subset thus provides redundancy. Error-correcting
codes defined by such non-mathematical constraints will be referred to as soft codes.
How they possibly look like will be examined in Sect. 8.4 of the second part.

The efficiency of soft codes should first be established. Have they any error-
correction ability? Rather surprisingly, the answer is yes. Soft codes may even be
expected to be good in this respect. Constraints which define soft codes are presum-
ably foreign to any intended error correction. However, it turns out that the most
successful means of error correction is not explicitly designed for this purpose: we
saw in Sect. 5.4.2 that Shannon used random coding for proving the fundamental
theorem of channel coding (Shannon 1948). He could not design a code reaching the
limit of what is possible, i.e., the channel capacity, but he was able to show that the
average probability of decoding error of a set of randomly chosen codes vanishes as
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the code length approaches infinity, provided the code rate is less than the channel
capacity; this set of random codes thus contains at least a code (not explicitly iden-
tified) with a decoding error probability less than or equal to this average. Further
studies revealed moreover that a code chosen at random has with high probability a
good error-correcting ability. Codes defined by arbitrary constraints are thus likely
to efficiently correct errors. Communication engineers believed during many years
that the folk theorem ‘all codes are good, except those we can think of’ was true.
This statement was even given a formal expression in (Coffey and Goodman 1990).
Although the exception was denied in 1993 when the turbocodes were invented, it
remains generally true. Thus, paradoxically, being defined by outer constraints rather
than designed for communication purpose, the genomic soft codes assumed to exist
in Sect. 8.1.3 are likely to be good. That the error-correction ability is a by-product
of devices having another function in the life processes may be thought of as an
example of ‘tinkering’, illustrating a typical approach of Nature (see Sect. 9.4).

Another reason why soft codes should efficiently correct errors can be drawn from
the Shannon-McMillan theorem (see Sect. 4.3.5). Indeed, this theorem shows that
the set of typical sequences generated by a stationary and ergodic source is similar
to the codewords of a code of rate H , where H is the source entropy.
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Chapter 6
Information as a Fundamental Entity

Abstract Chapter 6 considers information as a fundamental scientific entity. It begins
with briefly expounding the variant of information theory referred to as algorithmic,
which relies on computer science rather than communication engineering and gives
more insight into the information concept. The main specific property of information
is that it can be annihilated, especially when the medium which bears it is destroyed,
but also shared, which entails that it can proliferate. Moreover, it appears as an emer-
gent entity in a population of clones. The relationship of information and physical
entropy is examined. Physical entropy can be interpreted as measuring the amount
of information which is lost because the actual configuration of a physical system
at the atomic or molecular scale is unknowable. We interpret Boltzmann’s constant
as a signal-to-noise ratio. We show that our definition of information entails the
non-existence of the omniscient Laplace’s demon, and confirm that information is
non-physical. As an abstract entity which necessarily resides in the physical world,
information actually appears as a bridge between the abstract and the concrete.

This chapter is devoted to investigate the status of information as a fundamental
entity and its relationship with the physical world. Section 6.1 contains a short
discussion of the algorithmic information theory, which does not rely on probabilities
and provides a renewed view on the information concept. It turns out, however, that
the algorithmic complexity which it uses for measuring the information quantity
borne by a single sequence is generally not computable. The problems often become
tractable if probabilities are re-introduced, which moreover provides a link with
Shannon’s information theory and underlines the unicity of the information concept.

Section 6.2 examines the consequences of the sharing property which is specific
to information: an information can be copied, so repeatedly copying some ancestral
information results in a population of clones. We examine the information borne by
such a population and show that new information is created only when errors make
differences within its members.

In order to understand the connection of information with the physical world,
we briefly examine in Sect. 6.3 the relationship of information with the physical
entropy. Schrödinger and Brillouin proposed that the information quantity should
be defined as the negative of the entropy of physics; they named it negentropy. This
proposal results however in a contradiction with the sharing property of information,
which leads us to reject it. We propose instead to take information as a fundamental,

G. Battail, Information and Life, DOI 10.1007/978-94-007-7040-9_6, 133
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non-physical entity, the negative of its quantitative measure being then likened to the
physical entropy.

Finally, and as a conclusion of the first part, Sect. 6.4 presents information as
a bridge between the abstract and the concrete. The second part of the book in its
entirety will illustrate this statement.

6.1 Algorithmic Information Theory

Chapter 4 above was devoted to basic concepts of Shannon’s information theory,
based on probabilities and deriving from the analysis of communication engineer-
ing. We now consider an alternative way of introducing information which derives
from computer science. It is usually attributed, independently, to the great mathe-
matician Andreï N. Kolmogorov and to Gregory Chaitin (who then was 15). A recent
document containing an ample bibliography (Gàcs and Vitànyi 2011) actually states
that a third man, Raymond J. Solomonoff, who died in 2009, published in 1964
the very basic ideas of the theory, earlier than Kolmogorov (who stated that he ar-
rived at the same conclusions before he was aware of Solomonoff’s works). Chaitin
expounded the algorithmic information theory in (Chaitin 1988); a recent, very read-
able and fascinating book on the subject, by the same author, is (Chaitin 2005). Far
from opposing algorithmic and Shannon’s information theory, we show that these
seeming different concepts actually pertain to a single fundamental entity. The algo-
rithmic information theory will actually provide further insight on the very concept
of information and on its relationship with semantics. Despite its interest, it cannot
replace everywhere Shannon’s information theory which remains needed for dealing
with literal communication and other applications which involve probabilities.

Let us first state the idea which founds the algorithmic information theory:

the information message associated with some sequence is the shortest binary input to a
universal computer which instructs it in how to generate the given sequence. The length k

of this message is referred to as the algorithmic complexity of the sequence and measures
the information quantity it bears.

A computer is referred to as universal if it can compute any mathematical function,
as does any modern computer. The first universal computer has been introduced
by Alan Turing and it is referred to as the ‘Turing machine’. The definition of the
algorithmic complexity just given seems to depend on a particular computer and on its
programming language, but it is actually almost independent of them (at least for long
enough sequences). We may think of the computer as ‘encoding’the input information
message into the sequence it generates, since this case is not fundamentally different
from that considered at the beginning of Sect. 3.4.2. We now illustrate this definition
by some examples, assuming that the instructions to the computer are written in plain
English and that its output is a printed binary sequence.
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Example a). The binary sequence:

10101010101010101010101010101010

is made of the periodic repetition of ‘10’, 16 times. Clearly, a computer input for
generating this sequence may be as short as: “Print 16 times ‘10’”. Another equivalent
one would be “Print the first 32 digits of the binary development of 2/3”. Would the
sequence result from repeating ‘10’ infinitely many times, then the first input would
become “Print indefinitely ‘10’ ” and the second one would become shorter, namely,
“Print the binary development of 2/3”.

Example b). The sequence:

01101010000010011111001100110011

is not periodic and looks random. However, it consists of the first 32 binary digits
of the development of the irrational number1

√
2 − 1 so the computer input “Print

the first 32 digits of the binary development of
√

2 − 1” suffices for generating
it. Indefinitely continued, the sequence is generated by the shorter input “Print the
binary development of

√
2 − 1”.

Example c). The sequence:

10101110110001111100110100100001

looks random, too, but is not actually so as generated by the following deterministic
process. Provided its initial content is non-zero, a binary shift register of length μ (as
depicted in Fig. 5.4 and defined in its caption), endowed with a feedback and having
as input the all-0 sequence, generates a periodic, infinitely repeated motif of length
at most 2μ − 1. The first 31 bits of the above sequence is such a motif of maximum
length, often referred to as ‘pseudo-random’, that a 5-bit shift register generates. The
last bit, 1, is the first one of the repeated motif. The computer input for generating
this sequence, periodically repeated or not, is short.

Example d). The sequence:

01001010101111000011101100101100

was obtained by drawing the successive digits ‘0’ and ‘1’ at random with the same
probability 1/2, independently of each others. It is likely that no computer input for
generating it exists which is much shorter than

“Print ‘01001010101111000011101100101100’”

Furthermore, one could not describe a random continuation of this sequence without
lengthening the input. Writing the following outcomes is the only general means for
doing so.

1 Chosen as example of an irrational number smaller than 1.
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The sequences of examples a), b) and c) have thus a description almost independent
of their length, at variance with the sequence of example d), for which one may not
expect to give a description shorter than itself.

Example e). The sequence

01101011111111011011111100101110

results from drawing bits at random, too, but the bit ‘1’was drawn with a probability of
3/4. One may give a description of it shorter than its length n, for instance by counting
the number of ‘1’s, say m, and by indicating the rank of this sequence in the list of
all binary sequences of length n comprising m ‘1’s, ranging in lexicographic order.
Describing the original sequence then demands a number of bits equal to log2(n) +
log2

(
n

m

)
, close to log2(n)+nH2(m/n), where H2(x), defined according to Eq. (4.11)

asH2(x) = −x log2(x)−(1−x) log2(1−x), is the binary entropy function. Applying
Stirling formula shows indeed that nH2(m/n) is an approximation of log2

(
n

m

)
for n

and m large enough. In this case, describing the sequence does not demand as many
bits as the sequence itself, namely n, but except for the additive term log2(n) this
length equals n multiplied by the factor H2(m/n) which is less than 1, and the
smaller, the frequencies of ‘0’ and ‘1’ are more unequal. In this case, the length of
the computer input increases when that of the sequence increases, as in Example d)
but not as fast.

Example f). Let us now consider the algorithmic complexity of the sequence gener-
ated by the encoder of Fig. 5.4. We may first write a program telling what operations
the computer must perform on the bits of the input sequence so as to generate the
encoded (output) sequence, then enter both this program and the encoder input se-
quence, i.e., the information message. The input to the computer can thus be split
into two parts: a program and a data string, such that the former instructs the com-
puter in how to process the latter. In the Examples a) to e), the same distinction can
be made between a program and a data string. In any case, the program length is
constant (and short for such simple examples). The length of the data string is very
short in Examples a), b) and c), as long as the sequence to be generated in Example
d), approximately proportional to its length but shorter in Examples e) and f).

The algorithmic complexity in Example f) is k + ν, i.e., the length k of the data
string plus a constant ν which denotes the length of the program, understood as the
message which specifies how the data should be processed. The length k of the data
string has been used in Sect. 3.4.2 for measuring the information quantity borne
by the encoded sequence. We may think of the added constant ν as measuring the
information which has been used for building the encoder and decoder. In the in-
terpretation of information in a biological context given in (Battail 2009, 2011) and
expounded above in Sect. 4.3.5, it corresponds to what is referred to as ‘structural
information’, while the information quantity k is that of the information which can
be actually communicated over the channel, referred to as ‘symbolic’ in the same
papers and above. Therefore, one may think of the algorithmic information theory as
providing here the same information measure as the conventional (Shannonian) one,
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except that a constant is added to it, which corresponds to the structural information
associated with the communication hardware. An arbitrary large number k of infor-
mation bits, hence k shannons, can be communicated over the channel, while the
information quantity ν is actually ‘frozen’ in the transmitting and receiving devices.

The remark above has moreover a broader validity than the Example f) since
we already noticed in Sect. 4.3.5 that, thanks to the Shannon-McMillan theorem,
channel coding can be considered as adequately (but approximately) representing
the more general case of a stationary and ergodic source. The complexity measure
of algorithmic information theory can actually be identified with Shannon’s entropy
(in cases where they are both relevant) plus an additive term which can be ignored
for large enough sequences and can moreover be likened to structural information.

The algorithmic complexity appears as a valid measure of information quantity.
In general, unfortunately, it is not computable. Of course, this feature severely limits
its practical usefulness and mainly confines it to abstract reasonings.

Some further comments Further insight as regards the relationship of information
and semantics will be provided by reflections about the algorithmic information
theory, in addition to those prompted by source coding, discussed in Sect. 4.3.5.
We may interpret indeed the shortest input to the computer which results in a given
sequence being generated as performing the universal source coding of this sequence.
We may interpret a program as having a meaning for the computer, that of specifying
its output (for this peculiar computer with its peculiar programming language). The
relationship between the input to a computer and its output can then be interpreted
as a semantic rule, similarly to the relationship between the source symbols and the
codewords in Huffman coding (see Sect. 4.3.4). The computer appears as a means
for generating a symbolic sequence in response to another symbolic sequence. The
algorithmic information theory thus provides an easy bridge between information
and semantics.

Besides establishing relations between its input and output, which are symbolic
sequences, a computer is a material object which can, and does in many instances,
interact with the physical world by the agency of its output, according to rules
which can be interpreted as semantic. Everything which was written about the re-
lation of information and semantics in Sect. 4.3.5 remains true in the framework of
the algorithmic information theory, which confirms the unicity of the information
concept.

The length of the shortest program which instructs the computer in how to gen-
erate the given sequence, i.e., the algorithmic complexity of this sequence, seems
unrelated to the probabilistic information measure of Shannon’s information theory.
We must remember, however, that this shortest program is most often unknown,
unlike Example f) above. As stated above even its length is uncomputable. We are
thus led to deal with programs as random sequences and, more precisely, as binary
sequences where each bit is chosen at random with probability 1/2, independently
of the others. Hence, a k-bit sequence has the probability 2−k of being chosen as
a tentative program. Once the computer recognizes that a sequence is a meaning-
ful program, it is immediately executed: the computer prints the output sequence
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specified by this program, halts and resets itself. Once reset, it can execute another
program.

A meaningful program thus cannot be a prefix to another meaningful program,
which entails that the programs which specify the computer outputs constitute an
irreducible set of binary sequences. In any way, they must be separated from each
others so programs must be decipherable, just like the words of a code. Their lengths
{ki} thus satisfy the Kraft inequality (4.32) extended to an infinite number of terms,
namely:

∞∑

i=1

2−ki ≤ 1. (6.1)

We may thus contemplate the following thought experiment: successively try random
binary sequences subjected to the prefix condition as inputs to the computer and keep
those which actually result in the computer printing an output sequence. It would
result in a list of couples (binary program—generated binary sequence). The prefix
condition then guarantees that the first program found which entails the printing of a
particular binary sequence is actually the shortest one which has this result, so only
the first found program which entails the printing of a sequence is its information
message and needs to be kept in the list. Since the generated sequence itself can be a
part of the program (as in Example d) above), this list would contain programs which
can generate all the possible binary sequences. It is thus infinitely long, so it can be
known only, at best, up to some finite rank. Moreover, it turns out that when fed by
certain programs the machine will never halt, and a theorem2 of theoretical computer
science (similar to Gödel’s in numbers theory) tells that it is impossible to predict
whether a given program will behave so. This is obviously a long, complicated (and
tedious) task, which implies in principle an infinitely long time interval. It is why
we refer to it as a thought experiment.

The a priori probability of the i-th input sequence such that the computer halts, of
length denoted by ki , is pi = 2−ki . It is the probability that the i-th output sequence
in the list is generated by the computer. It is thus possible to associate a probability
with each output sequence thus creating a link between Shannon’s and algorithmic
information theories.

Among the random binary inputs, certain result in a computer output. The pro-
grams which belong to this category obey the prefix condition and their lengths {ki},
where i is the rank of a program, satisfy the extended Kraft inequality (6.1). The
other random inputs do not result in an output, however long they are. It thus makes
sense to consider the probability that a random program results in an output, as did
Chaitin (Chaitin 2005). As the lengths {ki} verify the extended Kraft inequality, it
is less than 1, and even strictly less since some input sequences do not result in an
output. Chaitin refers to it as the halting probability and denotes it by �. Thus:

� =
∑

2−ki , (6.2)

2 Chaitin credits Alan Turing for this theorem (Chaitin 2005).
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where the sum should be performed for the lengths of all programs such that
the computer halts. This number has a lot of properties which are discussed in
(Chaitin 2005).

6.2 Emergent Information in Populations

Probably the most important property of information, which deeply differentiates it
from physical entities, is its sharing property: an information can be copied, i.e.,
transferred onto a support different from the original one, which however does not
lose it. Repeatedly copying some ancestral information thus results in a population
of clones: information shares with life the ability to proliferate. We intend here to
develop this remark, which leads us to consider information in populations.

Let us first consider a set of N objects, regardless of their order3. It is assumed
to contain n1 identical objects of a 1-st type, n2 identical objects of a 2-nd type, . . .,
and nm identical objects of an m-th type, with of course m ≤ N and

∑m
i=1 ni = N .

The following entropy-like formula enables measuring in shannons the information
it bears:

Hset = −
m∑

i=1

(ni/N ) log2(ni/N ), (6.3)

since the proportion ni/N of each type of element is an estimate of the probability of
an element of this type. Thus, Hset is the only available measure of the information
borne by this set of objects.

Let us now consider an arbitrary sequence borne by some support, to be referred
to as ancestral. It can be copied on another support, and its copies themselves can be
copied. Let us refer to a set of N copies of the given sequence as a population. This set
is not ordered; in other words, it is not a sequence of sequences. We may use Eq. (6.3)
as a measure of the information it contains due to the diversity of its elements. If the
copying process is absolutely faithful and if the copies do not incur any modification,
all its N elements are identical, so m = 1, n1 = N and Eq. (6.3) entails Hset = 0.
Then the population of clones, considered as a set of objects, contains no information.
If the copied sequence is the representative of some information measured by H ,
the population of clones as a whole does not contain more information than each of
its elements, namely, H . However, if at least one of the copies is not faithful to the
original, an increase in the information borne by the population as a whole (besides
that borne by each of its elements) results since its elements are no longer identical,
and it is measured by Hset according to Eq. (6.3). For instance if a single copy differs
from the original, Hset = (1/N ) log2(N ) − (1 − 1/N ) log2(1 − 1/N ) = H2(1/N ),
where the binary entropy functionH2(·) has been defined by Eq. (4.11). As expected,
this information quantity is small if N is large.

3 At variance with a sequence where the order of the symbols is highly relevant.
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We may thus consider the population as bearing, regardless of that borne by
its individual members, an information due to the errors which possibly make its
elements distinct from each other. This creation of information is an emergence
phenomenon at the population level. Copying one of the elements of a population
become distinct from the initial clones originates in a distinct population, similar to
that initially generated by the ancestral sequence, which is then similarly endowed
with the information brought by errors. A simple example of such populations and
of their evolution is given in Sect. 8.3.

That errors have a constructive role may look strange and even contrary to the
common sense. It should be remembered, however, that the initial sequence is ar-
bitrary, so an erroneous copy of it is just as arbitrary as the original. We noticed
in Sect. 4.2.1 that there is no objective difference between ‘useful information’ and
‘perturbing noise’. The difference only lies in what interests the destination as an
actor in Shannon’s paradigm. The occurrence of an error is a random event among
others and the word ‘error’ should not be given a negative connotation.

From another point of view, a population of N copies of a same ancestral sequence,
where some of them are possibly affected by errors, constitutes in itself a kind of
rudimentary error-correcting code. Would no errors have occurred, N copies of each
symbol of the sequence would be available. In the case of binary sequences, assuming
that a symbol error occurs with probability psu, (1 −psu)N of these copies are in the
average identical to the original one (provided psu < 1/2, but the labelling of the
symbols by 0 and 1 is arbitrary, so it suffices to swap them to fulfill this condition),
comparing the number of identical symbols with a threshold equal to �N/2�, where
�x� means the smallest integer strictly larger than x, provides the best estimate of the
original symbol. The optimum decision about it thus results from majority voting.
Replication decoding, as discussed in Sect. 5.5.8, is fully relevant here and majority
voting could be replaced by the addition of the log-likelihood ratios of the symbols
if they are available, according to Eq. (5.13). For a sequence with an alphabet of size
α, the threshold above which the number of identical sequences determines the most
likely one becomes �N/α� since an error then results in the average in (α−1) different
symbols. Comparing the number of identical symbols in each position of the repeated
sequence to the indicated thresholds results in the best estimate of the symbol at this
position, and repeating this process for all symbols results in the best estimate of the
original sequence as a whole. Of course, for any alphabet size, the probability that
the decision about the original symbol is the more reliable, the larger the number of
identical symbols which exceed the threshold. This rough error-correcting means is
not foreign to biology, e.g., when decisions are taken by a ‘parliament of cells’.

To summarize, a population of copies subjected to random errors bears some
information in itself, besides that borne by the ancestral sequence, but also enables
determining the most likely estimate of this ancestral sequence.
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6.3 Physical Entropy and Information

6.3.1 Thermodynamics and Physical Entropy

The first law of thermodynamics (or Meyer’s principle) states that the total energy of
an isolated system is conserved, regardless of the form it may take (thermal, chem-
ical, mechanical, electrical, . . .). These forms can be converted into each other and
therefore can be expressed using the same unit. It is why they are dealt with as distinct
forms of a same entity. There is however a qualitative difference between them which
may be expressed as a degradation of energy. Mechanical and electrical forms of en-
ergy are at the highest grade and heat at the lowest because in spontaneous physical
processes the highest forms of energy are invariably degraded into heath (e.g., a car
which brakes converts its kinetic energy into heat, or an electrical current produces
heat when it flows through a resistor). The conversion of heat into mechanical or
electrical energy, on the contrary, does not spontaneously occur but always needs
manufactured devices which moreover convert only a fraction of the available heat
into a higher form of energy. As regards heat itself, when two objects at different tem-
peratures exchange heat, it spontaneously flows from the highest-temperature object
to the other one, never the other way round, thus tending to equalize temperatures.

Thermodynamics is the branch of physics which initially aimed at understanding
how the steam engine could use heat in order to produce mechanical work. Just like
information theory, it originated in a reflection about engineering achievements. In
both cases, thus, engineering came first and prompted scientific investigation, not the
other way round. Sadi Carnot first understood in 1824 (Carnot 1824) that two heat
sources at different temperatures are necessary for operating any thermal engine, and
that its energetic efficiency is proportional to the difference between these tempera-
tures. Rudolf Clausius formally defined the entropy and stated the second law circa
1850. He and many other researchers, among whom Maxwell, progressively elabo-
rated the science of energy exchanges, thermodynamics, which was further applied
to all domains of macroscopic physics: electricity, electromagnetism, chemistry, . . .

The second law of thermodynamics is formulated in terms of a quantity referred
to as entropy4. According to Clausius’ definition, a system incurs the infinitesimal
increase of entropy dSth when it exchanges (gives up or receives, depending on its sign
±) an infinitesimal heat quantity dq with a heat source at the absolute temperature
Tabs:

dSth
�= dq

Tabs
. (6.4)

Intuitively, heat spontaneously leaves the regions where the temperature is high for
those where it is lower, so it is the easier to receive heat from a source, the higher its

4 Not to be confused with the entropy as defined by information theory, e.g., in Sect. 4.2.2 above; the
relationship between the physical and informational entropies is examined farther in this section.
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temperature. Thus, dSth measures in a sense the ‘cost’of exchanging the infinitesimal
heat quantity dq between the system and the source.

The entropy results from integrating the infinitesimal increases of entropy dSth so
as to encompass all heat exchanges incurred by the system until it reaches its present
state, which can be formally written as

Sth =
∫

dq

Tabs
. (6.5)

The meaning of the integral in Eq. (6.5) is rather difficult to make precise and the
conditions of validity of this definition are rather restrictive.

The second law of thermodynamics states that the entropy of an isolated system
can but increase. It quantitatively measures the degradation of energy, meaning that
the energy has been transferred from the macroscopic to the microscopic scale. For the
first time, a physical law predicted an irreversible evolution: the arrow of time entered
physics. It turns out that the entropy measures how uniform is a system. The second
law of thermodynamics thus tells that differences tend to vanish, a phenomenon
observed in the trend of objects to equalize their temperatures as well as in the
diffusion of a drop of ink in a glass of water, or that of gas molecules tending
to occupy the total volume of a given enclosure. In other words, the increase of
physical entropy stated by the second law means that the disorder of any system
tends to increase. For instance, when friction converts the mechanical movement
of some object into heat, this means that the movement of this object is converted
into the disorderly movements of particles. A macroscopic observable displacement
is then exchanged with very many microscopic uncoordinated movements which
merely manifest themselves, statistically, as an increase of temperature.

A consequence of the second law of thermodynamics is that an isolated physical
system tends to thermal equilibrium. In a system where a monatomic gas and a solid
are simultaneously present in some isolated enclosure, they eventually equalize their
temperatures. The gas atoms travel long distances at high speed. The absolute tem-
perature of the gas measures the average kinetic energy of these atoms. In the solid,
molecules no longer move this way but incur vibratory movements at the atomic scale,
of average kinetic energy equal to that of the gas at thermal equilibrium. Moreover
the enclosure ‘contains’ an electromagnetic field at the same temperature, now mea-
suring the average energy of its photons. This field actually exists everywhere, even
in the absence of any matter.

Restricting its validity to an isolated system, which is actually a limiting case,
seems to severely restrict the validity domain of the second law. However, relaxing
this condition broadens to some extent its validity domain. Besides its formal state-
ment, it can moreover be loosely interpreted and understood as stating that physical
systems generally tend towards a state of maximal entropy, i.e., tend to mixing and
uniformity. The daily experience itself clearly shows that the trend towards disorder
is a universal reality of the inanimate world, even for physical systems which cannot
be considered as isolated. This trend can be counteracted only by a deliberate control.
A fictitious agent having the ability of perceiving individual molecules can perform
this task; it has been dubbed Maxwell’s demon. Section 10.2 below is devoted to it.
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Ludwig Boltzmann interpreted around 1877 the entropy of some system according
to the famous formula5 already written in Sect. 4.2.7, namely,

Sth = kB ln (W ), (6.6)

where W denotes the number of microscopic states (or ‘complexions’) which the
system can assume but which are indistinguishable at the macroscopic scale and kB,
referred to as Boltzmann constant equals 1.38 × 10−23 JK−1, in joules by kelvin.
This formula is actually due to Max Planck in 1900, but it expresses Boltzmann’s
thought. In modern words, we may thus think that Boltzmann interpreted the physical
entropy as measuring how much information is lost in a macroscopic observation.
This interpretation was very bold since the community of physicists of his time was
far from unanimously accepting the reality of atoms. Moreover, there was no known
reason why the number W of complexions should be finite. The answer to this last
problem was provided later by Planck with the concept of energy quanta.

It turns out that the number W of distinct microscopic configurations which can not
be distinguished at the macroscopic scale is inconceivably huge. The entropy, in its
physical meaning, which occurs in macroscopic phenomena is thus very large when
expressed in binary information units (shannons). For instance, melting a gramme of
ice increases the entropy by 1.2 JK−1, which amounts to the enormous information
quantity of 1.3×1023 shannons (Balian 1995). Through freeing the water molecules
from assuming a (comparatively) small number of configurations, melting hugely
multiplies their number but at the same time prevents an observer from knowing the
one which is actually realized. Maxwell’s demon could diminish the thermodynamic
entropy of a physical system only inasmuch as it is able, perceiving objects at the
molecular scale, to acquire information at this very scale (Brillouin 1956).

The basic disorder at the microscopic level also results in thermal noise. It is why
Boltzmann constant is met in the expression of the spectral density N0 of thermal
noise (see Sect. 3.3), which reads N0 = kBTabs/2.

After Newton and the Enlightenment philosophers of the XVIII-th century like
Voltaire, the universe was described as an immense clockwork. An extremely dif-
ferent vision of the world arose in the second half of the XIX-th century with the
advent of statistical physics and, although it is not usual to speak of ‘Boltzmannian
revolution’, it could well be qualified so. Schrödinger thought that it should have
deeply changed the way humans perceive the world, and he wondered why it was
not so for most people. Discussing the evolution of ideas about physical reality, he
wrote in Mind and Matter (Schrödinger 1943, p. 161):

Now between Kant and Einstein, about a generation before the latter, physical science
has witnessed a momentus event which might have seemed calculated to stir the thoughts
of philosophers, men-in-the-street and ladies in the drawing-room at least as much as the
theory of relativity, if not more so. That this was not the case is, I believe, due to the fact
that this turn of thought is even more difficult to understand and was therefore grasped by
very few among the three categories of persons, at the best by one or another philosopher.
This event is attached to the names of the American Willard Gibbs and the Austrian Ludwig
Boltzmann.

5 How this formula can be derived from Clausius’ definition is summarized in Appendix A of the
book by (Avery 2012, pp. 215–220). It is far from being straightforward.
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a b c

Fig. 6.1 Gas molecules within an enclosure (a molecule is represented as a black dot and its
instantaneous speed vector is shown). a Initial state, two separated compartments, all gas molecules
are at left. b A hole is made in the partition which separates the compartments. The molecules
then tend to be evenly distributed within the whole volume; the physical entropy increases. c All
molecules are located again in the left compartment. It is highly improbable, although not strictly
impossible, that this situation spontaneously occurs: a thermodynamic miracle

At least at the microscopic scale, the world could no longer be seen as a clockwork, but
as a chaos of innumerable fast moving molecules hitting each others at random. Less
than two decades later, the clockwork metaphor lost its relevance even at the cosmic
scale, when in 1889 Poincaré realized that the three-body problem of gravitation has
no analytical solutions and that the very long term behaviour of celestial bodies is
actually chaotic. The world can now be described only in terms of probabilities. J.L.
Borges wrote ‘I belong to a vertiginous country where lottery is an essential part of
reality’. His fiction actually matches Boltzmann’s world.

Let us illustrate Boltzmann’s vision of a gas in an enclosure by the simple ex-
ample of Fig. 6.1. The distribution of the molecules of a gas within some enclosure
is disordered and, at variance with the figure, the actual number of molecules is
extremely large: for instance, there are about 3 × 1023 molecules in one gramme of
molecular (diatomic) hydrogen. If the volume of the enclosure is initially divided
into two compartments, one of which containing gas molecules whereas the other is
empty, the kinetic theory of gases tells that eventually the gas molecules will evenly
occupy the whole volume of both compartments when a hole is made in the separat-
ing partition. The initial state is then more ordered than the final one, in accordance
with the second law, and the increase of disorder is measured by that of the entropy.
The system tends towards a state of maximal entropy, i.e., of maximal disorder. No-
tice that entropy is a mean quantity associated with a probabilistic system, hence its
significance is statistical. In the above example, it may occur that at some instant all
the gas molecules are located in one of the two previously separated compartments
(see Fig. 6.1c). However, because of the huge number of molecules (unlike the fig-
ure), this event would be a ‘thermodynamic miracle’ of extremely low probability,
never observed in practice although possible in principle.

The system just described conceals a paradox. The trajectories of individual
molecules are perfectly reversible. How could then an overall irreversibility result
when they are taken together? Loschmidt formulated in 1876 against Boltzmann’s
model the objection that it suffices to invert the speed of all molecules at a given
instant to revert to the initial state. This objection illustrates how a certain mathemat-
ical abstraction fails to fit a physical reality. Changing the sign of the variable t which
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denotes time in the equations which describe the movement of the molecules is math-
ematically trivial, of course. However, implementing the simultaneous inversion of
the speed of all molecules would imply the exact measurement of their speed because
the 3-dimentional billiard game played by molecules is chaotic, although determinis-
tic according to classical mechanics, so the system evolution is highly sensitive to the
initial conditions. Moreover, all molecules should be endowed with a speed exactly
equal to minus their previously measured speed, which implies a perfect control on
their speed and an infinite acceleration. Furthermore, less than 30 years later, Ein-
stein’s special relativity denied simultaneity and still later quantum physics denied
the relevance of classical mechanics at the molecular scale. Boltzmann’s vision of
the world has thus won against Loschmidt’s objection.

Although Boltzmann’s interpretation may be deemed illuminating, the entropy
has long been perceived as a rather strange entity. For instance, it is reported that
before completing his seminal work (Shannon 1948) Shannon asked some renowned
scientists how he could name the quantity he defined by Eq. (4.10). John von Neu-
mann is said to have answered: “I suggest that you name it ‘entropy’. First of all,
because it is formally similar to Boltzmann’s entropy. But also because nobody ex-
actly knows what is entropy, so you’ll always have the last word in discussions”
(Avery 2012, p. 87). True or not, this anecdote is telling: in the middle of the XX-th
century, entropy was still considered as somewhat mysterious by many scientists. In
any way, Shannon did name ‘entropy’ his quantitative measure of information.

6.3.2 Boltzmann Constant as a Signal-to-Noise Ratio

We already noticed in Sect. 5.2.3 that the signal-to-noise ratio determines the largest
possible information quantity that an additive white Gaussian noise channel can
transfer. The equalities (5.4) or (5.5) thus establish a correspondence between
the signal-to-noise ratio, a dimensionless physical parameter, and an information
quantity. We now try to interpret Boltzmann constant as a signal-to-noise ratio.

It has yet been met twofold in this book. First of all, we stated in Sect. 3.3 that the
power spectral density of thermal noise, the most fundamental perturbation which
affects any received signal, is given by

N0 = kBTabs/2, (6.7)

where kB denotes Boltzmann constant and Tabs the absolute temperature, which
measures the average kinetic energy of a particle in a gas or in any set of a large
number of freely moving particles, like the electrons in a metal or the photons of
the black-body radiation. Since their movements are completely disorderly, they
jointly result is a ‘noise’ of average energy per physical dimension equal to N0. The
Boltzmann constant expresses the value of N0 in physical units. In joules per kelvin,
it equals kB = 1.38 × 10−23 JK−1.

We also found Boltzmann constant in Sect. 4.2.7 as the coefficient in the
Boltzmann-Planck Eq. (6.6) which relates the thermodynamic entropy of a system



146 6 Information as a Fundamental Entity

Sth and the number of complexions W which can be distinguished at the microscopic
scale but correspond to a single macroscopic state of this system.

The most straightforward interpretation of Boltzmann constant is that it simply
operates a conversion of units. Since the temperature measures the average kinetic
energy of an atom or a molecule, Boltzmann constant just expresses this very small
quantity in terms of units at the macroscopic scale, e.g., in joules per kelvin as above.
The change of unit is anecdotic and its necessity comes from the measurement of
temperatures having antedated by centuries the proof that atoms have a physical
reality, which enabled the modern statistical interpretation of temperature. What
really matters is the change of scale. The macroscopic quantities are actually averages
over an extremely large number of objects having absolutely random locations and
speeds. From this point of view, the Boltzmann constant appears as bridging the
microscopic and the macroscopic scales, and it is far more interesting in this respect.

Let us consider Na atoms of a monatomic gas in some enclosure of volume V ,
at thermal equilibrium. Let us consider a single atom of this gas and let vx denote
the component of its speed according to some given spatial direction x at some time
t . The thermal equilibrium entails that vx does not depend on the spatial location of
the considered atom within the enclosure nor on the considered direction. Moreover,
the parameters of its distribution do not vary with time. The mean E(vx) is zero.

Let v
�= E(v2

x) denote its variance. Due to the enormous number Na of atoms in any
enclosure at the macroscopic scale, vx has with an excellent approximation a Gaussian
probability distribution (according to the ‘central limit theorem’, also referred to as
Liapunov’s). We consider the distribution of the random variable K = v2

x which, up
to a proportionality factor, equals the kinetic energy of the atom in the considered
direction. Now K is essentially positive. Let κ denote its mean. The variance w of K

is, by definition, w = E(K − κ)2 = E(K2) − κ2 = E(v4
x) − κ2. Since for a Gaussian

random variable E(v4
x) = 3κ2, w = 2κ2. Then the distribution of the kinetic energy

of atoms according to any direction has a variance equal to twice its squared mean.
In order to interpret the Boltzmann constant as a signal-to-noise ratio, let P denote

the pressure and Tabs the absolute temperature. Then, the equality PV = NakBTabs

entails
kB = (PV/Na)/Tabs.

PV is a mechanical work, hence an energy, and Tabs measures the average kinetic en-
ergy of a single atom. PV is a macroscopic quantity since P is a macroscopic average
quantity, and Na is a constant number. In denominator, Tabs is the macroscopic aver-
age of a quantity which is completely random at the microscopic scale and can thus
be dealt with as noise. In this interpretation, the signal energy is S = PV/Na where
all the quantities in this expression are macroscopic. Then Tabs may be interpreted
as measuring a noise energy, so it sets a limit to the precision of the measurement.
The same units must of course be used for both signal and noise, so the Boltzmann
constant should be equated to 1. Interpreted as a signal-to-noise ratio of 1, it corre-
sponds according to Eq. (5.4) to a channel capacity of C = 1/2 shannon per sample.
The measurement of the kinetic energy of a single atom thus cannot provide more
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than this information quantity. Its basically random character entails that it acts as
‘self-noise’, limiting the accuracy of its own observation.

This result meets the idea expressed by Gilles Cohen-Tannoudji of the Boltz-
mann constant being a quantum of information quantity (Cohen-Tannoudji 1998)
and shows that its value in information units is 1/2 shannon. But what interpretation
can be given to this result? Notice that this limitation of the capacity results from a
perturbing noise intrinsic to the measured object itself, under the assumption that it
has been perfectly singled out. This is very optimistic and any actual measurement
at the atomic scale is likely to be perturbed by other noise sources so the limit of 1/2
Sh should be understood as an upper bound to the actual informational capacity of
this measurement, most often grossly overestimating it. Moreover, the capacity is
the largest information quantity which can be obtained. Only the optimized design
of the measurement apparatus and of the experimental protocol would ideally enable
eventually reaching it.

6.3.3 Exorcizing Laplace’s Demon

Laplace’s and Maxwell’s demons are two fictitious beings which were popular in
the XIX-th century for illustrating physical problems. Let us try to exorcise them by
means of informational concepts. We begin here with Laplace’s demon. We defer to
Sect. 10.2 below dealing with Maxwell’s.

Laplace described the demon who bears his name as follows as quoted in (Postel-
Vinay 2004):

For a being as clever as to know at a given instant all the strengths which are exerted in nature
and all the positions and relative speeds of the particles which constitute the Universe, [. . .],
nothing would be uncertain, and the future as well as the past would be present to our
eyes. (Pour un être suffisamment intelligent pour connaître à un instant donné toutes les
forces s’exerçant dans la nature et toutes les positions et vitesses relatives des particules
qui composent l’Univers, [. . .], rien ne serait incertain, et l’avenir comme le passé serait
présent à nos yeux.)

Notice that Laplace refers to his ‘demon’ as clever (intelligent), although it must be
able to exactly know a huge number of data, i.e., it should be immensely informed.
There is moreover an inconsistency in the quoted sentence: it refers at its beginning
to ‘a being’ (un être), but ends with ‘our eyes’ (nos yeux), meaning that Laplace
actually likened the demon to himself or ourselves.

Was Laplace’s omniscient demon a scientific substitute for God, or intended as
a counter-example for illustrating the limits of pure determinism (remember that
Laplace has been one of the founders of probability theory)? In any way, our in-
terpretation of information implies that the demon should be able to memorize the
measurements made on each of the particules of the universe, but the measurement
apparatuses as well as the medium for storing this information could only be made
of certain of these particles, which should themselves be similarly measured . . .

in an endless chain. The demon should thus be outside the universe, hence cannot
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exist as a physical object. Moreover, the precision of these measurements should be
absolute because of the chaotic character of the particle interactions, which in prin-
ciple would need more than all the available memory in the universe for any single
measurement. How absurd is the existence of the demon becomes obvious once the
necessity of a physical inscription of any information, as stated at the beginning of
this book, is accepted. Implementing Loschmidt objection to Boltzmann would need
the help of Laplace’s demon and the impossibility of its existence is consistent with
the refutation of Loschmidt we proposed above. The huge quantity of information
acquired by the demon would not be tractable and could not be communicated. It
could not be processed in order to obtain any usable prediction at the macroscopic
scale, that of a human observer. We may thus interpret the physical entropy as mea-
suring the information about a physical system that the demon would have acquired if
it existed: as a missing information. Avery credits Szilard for having first interpreted
thermodynamic entropy as measuring a missing information (Avery 2012, p. 84).

Besides being non-existent, Laplace’s demon is ‘overinformed’. It possesses an
immense information quantity but no thinking being can use it. Replacing innumer-
able details by a few quantities which are actually statistical means is an absolute
necessity. The information loss which is measured by the physical entropy is in fact
highly beneficial to an intelligent being. Quoting Jean-Pierre Changeux: ‘learning
is eliminating (apprendre, c’est éliminer)’ (Changeux 1983). Chaitin similarly con-
siders the shortening of sequences by source coding as a necessary step towards
understanding (Chaitin 2005).

6.3.4 Information is not a Physical Entity

Some prominent physicists tried to define information as the negative of the physical
entropy. Schrödinger did so and named it ‘negentropy’(Schrödinger 1943). Brillouin
followed Schrödinger in this respect and designated by ‘negentropy’ the quantitative
measure of information introduced by Shannon (Brillouin 1956, 1959). Many are
convinced that this is right, others think that the identity of the expressions of the
physical entropy and of Shannon’s quantitative measure of information is purely
formal and does not express any reality. For instance, Yockey nicely mocks the
upholders of using negentropy in biology, writing: ‘Life does not feed on negentropy
as a cat laps up cream’ (Yockey 2005).

We accept the concept of negentropy only as regards the quantitative measure
of information because it corresponds to a resolved uncertainty, but we reject the
identification of information, as an entity, with the negative of the physical entropy.
This identification entails that the quantity of information borne by n clones bearing
each an information quantity of H is measured by nH , as written by (Brillouin
1959; Eigen 1971) and others. We cannot accept this conclusion and we just stated
the contrary in Sect. 6.3.3 above. We introduced information in Sect. 2.2 as an abstract
entity intrinsically foreign to the physical world although it resides in it as necessarily
borne by a physical medium, which forbids its derivation from any physical entity. As
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a consequence, the ability to proliferate is specific to information as we defined it. We
show below that life, and only life, uses information, which leads to the conclusion
that life thrives at the expense of the physical entropy. Although making n clones
bearing each an information quantity of H actually diminishes the physical entropy
by nH , the basic properties of information stated in Sect. 2.2 forbid that making
clones can create any information, for lack of creating any novelty.

We already interpreted in Sect. 4.2.7 the entropy of physics as the information
quantity associated with the knowledge of the microscopic state of a physical system.
Since the number of equally possible states is huge and since no measurement can
let know the actual state, the system is known only in the average, through physical
quantities like temperature and pression. Taking information as a fundamental entity,
we interpret the physical entropy as measuring an inevitably missing information.
Then, the negentropy of Schrödinger and Brillouin becomes the lack of a lacking
entity. But cancelling cancels differences. Multiplying by 0 cannot be inverted; 0
is a devouring entity, something like a mathematical black hole, so the lack of a
lacking entity does not define anything. This situation reminds what Jared Diamond
names ‘the Anna Karenin principle’ (Diamond 1997) according to the first sentence
of Tolstoy’s novel, which reads ‘Happy families all look alike; unhappy families are
each unhappy according to their own way.’ Diamond’s principle states that ‘being
successful actually demands that many failure causes are avoided’.

It must be accepted that information is a fundamental scientific entity of its own
which up to now has been overlooked. The attempts of (Schrödinger 1943) or (Bril-
louin 1959) to derive it from the physical entropy have failed because information is
basically an abstract entity, hence foreign to the physical world although it resides
in it. Moreover, no other physical entity than entropy could enable such a derivation.
The interpretation of the physical entropy as measuring a lack of information, which
is rather commonplace and with which we fully agree, is meaningful only provided
information is taken as a fundamental entity.

It should not be forgotten that science is a human activity. Any scientific discipline
demands from its researchers a commitment to its bases, especially as regards the
few entities which found it. They become to some extent prisoners of the fundamen-
tals of their discipline, and it is one of the reasons why transdisciplinary research
meets so many obstacles. It is why Schrödinger, Brillouin and many other physicists
could not conceive information but as a physical entity. On the contrary, informa-
tion is the fundamental entity of communication engineering and it is not related to
any physical entity6. We assert that information is not physical, but why should a
fundamental entity be necessarily so? Information is basically mathematical, hence
abstract. Promoting it as a fundamental entity in physics and biology deserves being
tried; it can and will open new horizons (Battail 2009).

To shortly conclude this section, we may state that

information is not negentropy, but
physical entropy measures neginformation.

6 We already expressed our disagreement with Landauer’s statement that ‘information is physical’
at the beginning of this book; see Sect. 2.2
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The first statement contradicts Schrödinger and Brillouin; it expresses our denial of
information being physical, as it would be if information could derive from a physical
entity.

6.4 Information Bridges the Abstract and the Concrete

Although it is an abstract entity, an information necessarily resides in the physical
world and can have some control on it. As a consequence of the second law, the
physical world tends to randomly modify the representatives of information which
dwell in it, but information itself can be made to some extent resilient to such changes,
by means of some kind of error-correcting code, at the price of redundancy.

We stated in Sect. 4.3.5 that an information message can be endowed with se-
mantics by associating with each of its bits the answer to a dichotomic question.
These answers specify a path in a tree and the abstract information message then
represents a linguistic statement. Information messages reside in the human brain
and have their material support in neurons, although the mental mechanisms escape
our understanding to a large extent; their written versions are contained in man-made
memories and contribute in the human culture.

In other instances, however, the bits are not intended to answer questions but
consist of instructions: each information bit tells what of two possible alternative
actions should be performed. In the case of the algorithmic information theory, for
instance, a bit of the program tells the computer what elementary operation should be
executed at the next step of the computing process. It thus triggers physical actions,
the cumulated result of which is eventually the specified computer output. When
one among 2k possible actions is performed depending on some n-bit sequence
representing an information of k shannons, this abstract entity exerts a control on
physical objects. For instance, in genetics, reading a codon in the messenger RNA
(a 6-bit sequence) results in the ribosomal machinery appending one more specified
amino-acid to a polypeptidic chain which eventually folds into a protein, or stopping
the translation process. Then an abstract information has concrete physical results.

Let us emphasize that the correspondence of bits with dichotomic questions or ele-
mentary instructions to a computer only concerns the bits of an information message,
i.e., devoid of redundancy. The information borne by such a message is destroyed by
any casual error and Chaps. 3 and 5 have shown that the use of an error-correcting
code is mandatory for ensuring the conservation of informations. The concept of ‘soft
code’ as discussed in Sect. 5.5.11 explains why genomic error-correcting codes may
pass unnoticed: they are (or seem to be) mere by-products of more visible functions.

The conservation of human culture, similarly to that of biological information,
heavily relies on soft codes. That linguistic constraints result in efficient protection
of information against casual errors is indeed a matter of daily experience. As an
example, the recognition of phonemes in spoken language is quite poor, so merely
spelling a word does not suffice in a noisy surrounding for its letters to be correctly
perceived. It is often necessary to designate each letter by a spoken word, e.g., to
use Alpha, Bravo, Charlie, . . . for A, B, C, . . . , thus providing redundancy, for
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ensuring the correct reception of a spelled word. Yet, the spoken language is liter-
ally understood even in very noisy surroundings like vehicules, crowded streets or
cocktail parties, which clearly shows that the many linguistic constraints (morpho-
logical, syntactic, semantic, . . .) act as a powerful error-correcting soft code (having,
moreover, a nested structure similarly to the genomic error-correcting codes to be
hypothesized in Sect. 8.1.4). How its decoding is performed is unknown, but a highly
complex machine clearly succeeds in doing so: the human brain. Would the human
language lack error-correcting ability, any conversation would be impossible and our
social life would be very different, if even possible.

The necessity of redundancy entails that sequences of natural or cultural origin are
long. However, a semantically significant information message is necessarily short
because it specifies one among many instances, the number of which exponentially
increases in terms of its length. This number soon becomes so huge that it loses any
meaning. A sequence of k bits enables discriminating between 2k instances. This
number exceeds 1080, the estimated number of atoms in the visible universe, if k

exceeds 266. If far longer messages are met in both natural and cultural sequences,
it is not because very many binary statements are necessary, but because a very
redundant encoding is needed for conserving short information messages.

In the case of genomes, this order of magnitude leaves much room for redundancy,
meaning that they possibly involve very efficient error-correcting codes. The length
of the shortest virus genome is of about thousand base pairs. In the absence of
redundancy, thus, it would enable selecting one instance among much more than the
atoms in the universe. The genomes of animals and plants are still much longer, of at
least hundreds of thousand base pairs. As an example, the size of the human genome,
far from being the longest, is of about 3.2 × 109 base pairs, which corresponds to
a binary length twice as large. Writing the number of distinct binary choices which
could be thus specified if no redundancy were present would require about 1.92 billion
decimal digits! This number is inconceivably huge. It would be absurd to interpret it
as a number of possible independent choices. What may be concluded is simply that
genomes are immensely redundant. Similarly to genomes, any sequence originating
in human culture is extremely redundant: the memory size of a computer, the binary
length of a book or even of a newspaper article, all exceed by far the modest length
of 266 binary digits which suffices for counting the atoms of the visible universe. A
huge redundancy is thus the rule in symbolic sequences of natural as well as cultural
origin. It is the price that must be paid for conserving informations.
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Part II
Information is Coextensive with Life



Chapter 7
An Introduction to the Second Part

Abstract Chapter 7 introduces the second part devoted to the application of infor-
mation theory to life. It first emphasizes its difference with biosemiotics, a discipline
which applies semiotics to biology. Semiotics is restricted to semantic commu-
nication, implicitly assuming that literal communication is trivially secured. The
necessity of literal communication makes information theory a prerequisite to seman-
tics. As a mathematical discipline, information theory needs a precise vocabulary and
methods hopefully introducing a rigourous theoretical framework in biology. Infor-
mation is thus considered as a fundamental entity for dealing with life, as important
as the physical entities of matter and energy.

7.1 Relationship with Biosemiotics

The title of this second part, ‘Information is coextensive with life’, is a paraphrase of
Thomas Sebeok’s statement: ‘Semiosis is coextensive to life’. ‘Semiosis’ means the
use of signs. Signs may be understood as events which are intended to refer, according
to some conventions, to objects otherwise unrelated with them. They ‘stand for’
something else. The signs are unimportant by themselves, only the meaning they are
given according to the conventions is relevant. The human language is an example of a
system of signs indissolubly linked to humankind. Sebeok’s sentence boldly extends
to life in general a statement which obviously applies to human life. The science of
semiosis, semiotics, is primarily concerned with semantic communication and has
been mainly devoted to the understanding of linguistic phenomena. Biosemiotics
is the scientific trend initiated by Sebeok which uses semiotics for analyzing the
many instances where communication takes place in the living world (Barbieri 2008;
Favareau 2010). Biosemiotics mainly relies on the semiotic work of the American
philosopher Charles Peirce (1839–1914).

In the first part of this book, we developed concepts associated with com-
munication engineering. We stated that information theory, the science of literal
communication, was elaborated without any consideration to semantics and thanks
to this divide. However, literal communication is an obvious prerequisite to semantic
communication, so information theory should precede semiotics (Battail 2009). It
turns out that, just like mainstream biologists, many biosemioticians ignore or reject
it. We try in the sequel to stress the importance of information in life sciences. We
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may replace ‘semiosis’ in Sebeok’s statement with ‘information’ insofar as informa-
tion is the scientific entity necessarily associated with communication. This change
of vocabulary expresses our intention of opening biology to the science of informa-
tion as expounded in the first part of this book. The reformulated statement does not
replace the original one, of course, but lays emphasis on the necessity of first taking
into account information, yet almost completely ignored as a scientific entity despite
its paramount importance.

Communication occurs in the living world in very numerous instances and we
do not attempt to list them. They range from communication between molecules up
to communication within ecosystems and advanced animal societies, including the
human ones. The physical means which implement these communications are ex-
tremely diverse, but information theory holds for all communication means and does
not need the details of their operation. Indeed, it draws much of its synthesis ability
from its blindness to such details. Communication in the living world has been stud-
ied from the semiotic point of view by biosemioticians, e.g., (Witzany 2006/2007).
The reader will also find in (Mian and Rose 2011) a comprehensive discussion of
many biological communication problems at the cellular level which are relevant to
information theory.

7.2 Content and Spirit of the Second Part

Among the numerous communication engineering problems solved by Nature, we
restrict ourselves in Chap. 8 to communication of genomes over time at the geological
scale, as a single paradigmatic example which concerns a major feature of life,
heredity. Nature solved there a very hard communication problem but biologists were
unaware of the solution for lack of perceiving the problem. We show in Sect. 8.1
that its solution necessarily implies the existence of genomic error-correcting codes.
Assuming their existence, in turn, explains many basic facts of life left unexplained by
mainstream biology (Sect. 8.2). Section 8.3 shows how the properties of information
and of error-correcting codes enable roughly simulating heredity. Section 8.4 is
devoted to the yet unsolved problem of identifying the genomic error-correcting
codes.

More generally, recognizing the prominent role of information in life further
suggests that transmitting, receiving, recording, processing, and using information
is as specific to the living world as to delineate its border with the inanimate world
(Chap. 9, and especially Sect. 9.1). Information then appears as the yet missing funda-
mental entity that science needs for properly dealing with life (Sect. 9.3). Chapter 10
continues Chap. 6 as regards the place of life within the physical world. Chapter 11
concludes the whole book.

Our approach will be better understood in contrast with the following quotation
from the biologist and historian of biology (Morange 1994, pp. 223–224):
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If [the schemes of molecular biology] are so attractive, if they look obvious and in accordance
with ‘reality’, it is because their underlying logic and the image of the biological world they
uncover are in harmony, in resonance with the image of the surrounding world, delivered as
well by the media as by the other scientific disciplines. Explaining the operation of living
beings in terms of information, memory, code, message, feedback regulation, amounts to use
a language and images that everybody knows. (Si [les schémas de la biologie moléculaire]
sont si attirants, s’ils semblent évidents, correspondre à la ‘réalité’, c’est que la logique qui
les inspire et l’image du monde biologique qu’ils révèlent sont en harmonie, en résonance
avec l’image du monde environnant, livrée tant par les médias que par les autres discipline
scientifiques. Expliquer le fonctionnement des êtres vivants en termes d’information, de
mémoire, de code, de message, de régulation par rétroaction, c’est utiliser un langage et des
images connus de tous.)

This text illustrates how the vocabulary of communication and information impreg-
nates the current biological thoughts and literature, but also that it lacks scientific
relevance. The media are indeed replete with words which belong to this vocabulary,
but are the corresponding concepts understood? For instance, one has read in news-
papers, even of good standing, that biologists discovered the genes of homosexuality
or of belief in God. Such twaddles should have convinced Morange that using ‘a
language and images that everybody knows’1 is not sufficient (nor necessary) for
making science! Prominent philosophers and scientists like Henri Poincaré state on
the contrary that science must use a language distinct from that of everybody where
the extant words, when they are used, are endowed with a precisely defined and
unambiguous meaning (Poincaré 1911). Precise concepts are actually needed, and
mathematics is for Poincaré the best example of the needed ‘language of science’.
Morange rightfully places information at the heart of the modern vision of life, but in
the looser possible meaning of the word. In his later book (Morange 2005), he more-
over discards information theory with the back of one hand after giving a caricatural
account of it. He clearly does not think of information as a scientific concept on the
same footing as those of physics or chemistry. We take the opposite of his opinion in
what follows: as stated in Chap. 1, we try to use information theory and the principles
of communication engineering to deal with biological problems, and we show that
information is a needed fundamental scientific entity yet generally overlooked.

Suggesting that biology should explain the reality of the world by the daily ex-
perience, Morange goes against the general trend of scientific history. Did physics
proceed this way? Even classical physics as initiated by Galileo and Newton describes
the reality of the world in terms which deeply depart from the daily experience.
Alexandre Koyré wrote that Galileo’s decision to deal with mechanics as a branch of
mathematics is paradoxical as intended to ‘explain the real by the impossible’. One
may interpret his celebrated sentence ‘The book of nature is written in mathematical
language (Il libro della natura è scritto nella lingua matematica)’ as stating the need
of a precise language for describing reality. Since the revolution brought to physics
at the beginning of the XX-th century by the relativity and quantum theories, the gap
between the daily experience and the scientific description of things has moreover

1 Moreover, the precise meanings of information, memory, code, . . . are actually known by few
people. It would be closer to the truth to say that everybody believes he/she knows these meanings.
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become so wide that not only the former is of no use for understanding the latter, but
practicing physics needs an effort against sensible intuition. Far from being useful,
the daily experience has become a burden.

The extremely complex reality of life demands, at the opposite of Morange’s
opinion, abstract and general enough scientific concepts. We think that the concept
of information, due to the ubiquiteness and crucial importance of communication in
the living world, is the most adequate one. We look forward to biology becoming a
great extension of information theory. Information theory may be thought of as well
as an integral part of biology.

Some thinkers foreign to mainstream biology actually stated that information is an
unescapable concept for understanding life. It is especially pleasant to ackowledge
the opinion of Kenneth Boulding (1910–1993) in this respect (Boulding 1956).

Morange is far from being the sole biologist who discarded information theory
without seriously examining it: this prejudice is shared by a vast majority of biolo-
gists. Many of them, however, clearly understood that information is a crucial actor
in life phenomena. Maynard Smith quotes Weismann as having first realized it was so
as regards heredity. He thought himself that information is very important in biology,
but he quickly discarded information theory, briefly arguing that it could be of no
use in biology because it ignores semantics (Maynard Smith and Szathmáry 1997,
1999). This negative opinion was shared without further examination by most biol-
ogists, all the more it avoided any effort for acquiring a mathematical science often
foreign to their culture.

At the beginning of the nineteenth century, biologists believed that organic com-
pounds were the product of a specific ‘vital force’so they could not be synthesized but
by living beings. According to this belief, chemistry was divided into the strictly sep-
arated domains of ‘inorganic’and ‘organic’chemistry. This belief was ruined in 1828
whenWöhler performed the synthesis of an organic molecule: urea, H2N−CO−NH2,
from inorganic elements. At the beginning of the twenty-first century, biologists think
that biological information is foreign to the concept of information introduced by
Shannon and proved to be highly successful by the engineers’ experience. Simi-
larly to the chemists of the past, they believe that there should exist a science of
‘organic’ information, which moreover—at variance with organic chemistry at the
beginning of the nineteenth century—has to be created ex nihilo. For instance, Jud-
son explicitly refers to such a duality, setting information in Shannon’s sense against
Crick’s opinion about information (Judson 2001). He also quotes François Jacob:
‘Language studies the message transmitted from an emitter to a recipient. Now there
is nothing of the kind in biology: no emitter, no recipient. The famous message of
heredity transmitted from one generation to the other, no one has ever written it; it
is constituted by itself, slowly, painfully traversing the vicissitudes of reproductions
subtended by evolution.’ Obviously, a language has a human emitter and a human re-
cipient. Precisely because it ignores semantics, information theory is relevant to life.
Jacob’s objection does not apply to information theory, although Judson interprets it
as ruling out the use of Shannon’s information. Almost all biologists similarly believe
it is irrelevant to their field. When and how will the belief in a still unformulated
organic information theory be ruined?



References 159

References

Barbieri, M. (2008). Biosemiotics: A new understanding of life. Naturwissenschaften, 95, 577–599.
Battail, G. (2009). Applying semiotics and information theory to biology: A critical comparison.

Biosemiotics, 2(3), 303–320. doi:10.1007/s12304-009-9062-4.
Boulding, K. E. (1956). The image: Knowledge in life and society. Ann Arbor: University of

Michigan Press.
Favareau, D. (2010). Essential readings in biosemiotics. Dordrecht: Springer.
Judson, H. F. (2001). Subtended by evolution. Nature, 410(6825), 146–147. (Review of the book

by Lily E. Kay: Who wrote the book of life? A history of the genetic code, Stanford University
Press, 2000).

Maynard Smith, J., & Szathmáry, E. (1997). The major transitions in evolution. Oxford: Oxford
University Press.

Maynard Smith, J., & Szathmáry, E. (1999). The origins of life: from the birth of life to the origins
of language. Oxford: Oxford University Press.

Mian, I., & Rose, C. (2011). Communication theory and multicellular biology. Integrative Biology,
3, 350–367.

Morange, M. (1994). Histoire de la biologie moléculaire. Paris: La Découverte.
Morange, M. (2005). Les secrets du vivant. Contre la pensée unique en biologie. Paris: La

Découverte.
Poincaré, H. (1911). La valeur de la science. Paris: Flammarion.
Witzany, G. (2006/2007). The logos of the bios, I, and II. Helsinki: Umweb Publications.



Chapter 8
Heredity as a Communication Problem

Abstract Chapter 8 considers the capital problem of heredity. The conservation of
genomes over the ages is shown to blatantly contradict the existence of frequent
mutations in genomes of somatic cells. This contradiction can be solved only by
hypothesizing that genomes are endowed with error-correcting codes. Moreover, the
better conservation of very old part of the genome like the HOX genes suggests
that the genomic error-correcting code should combine a number of nested compo-
nent codes which appeared progressively during the evolution process, and can be
likened to Barbieri’s organic codes. It is shown that these hypotheses meet reality
and explain a number of facts left unexplained by mainstream biology: genomes are
immensely redundant, discrete species exist which moreover can be ordered accord-
ing to a hierarchical taxonomy, and nature proceeds with successive generations.
Evolution appears as contingent and saltationist because the genetic information
originates in regeneration errors. Even the trend of evolution towards increased com-
plexity, hence towards longer genomes, is explained by the better performance of
long error-correcting codes, which thus have been favoured by Darwinian selection.
We introduce a very simple model of ‘genomes’ consisting of binary sequences sub-
jected to random errors. They are either left uncoded, or encoded by means of a
simple error-correcting code. They are periodically replicated, and regenerated if
they have been encoded. The resulting population of ‘genomes’ is referred to as ‘toy
living world’. We examine the permanence of such ‘genomes’ in the presence of
random symbol errors, with and without error correction. If the genomes are not
coded, a chaotic set of ‘genomes’ results where ‘species’, i.e., populations of iden-
tical ‘genomes’, are the more fleeting, the longer they are. Only the existence of
error correction can account for the permanence of ‘genomes’ of lengths compatible
with those of actual genomes and the existence of discrete species. The hypothesized
genomic error-correcting codes remain unidentified although some guesses can be
made about them, and the means of their regeneration remain unknown.

8.1 The Enduring Genome

As quoted by Etienne Klein (2010, p. 153), Ludwig Wittgenstein wrote:

Strangely, it is said that God created the world and not: God continuously creates the world.
Why would the fact that the world once began to be be a greater miracle than the fact that it
continued to be?

G. Battail, Information and Life, DOI 10.1007/978-94-007-7040-9_8, 161
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Similarly, biologists seem to think of the fact that genomes once began to be what
they are is much more important than the fact that they continued to be so. That this
is wrong is clear once it is realized that the integrity of genomes is continuously
threatened by mutations, a biological fact as well as the existence of genomes.

Richard Dawkins wrote in The selfish gene (Dawkins 1976):

We do not know how accurately the original replicator molecules made their copies. Their
modern descendants, the DNA molecules, are astonishingly faithful compared with the most
high-fidelity human copying processes.

Copying, however faithful it may be, is actually not sufficient for ensuring the genome
conservation. Would the copying process be absolutely faithful, the integrity of
genomes would still be threatened by casual mutations occurring outside the repli-
cation process. Only error-correcting codes can secure the permanency of genomes
by intrinsically endowing them with resilience to changes.

8.1.1 A Blatant Contradiction

The powerful theorems of information theory are not even needed to perceive a
blatant contradiction in the usual accounting of how genomes are communicated over
time; common sense suffices. A genome1 can be replicated because the double-helix
structure of DNA enables its copy. Each of its two strands is used as a template for
reconstructing the complementary one. Then a single double-strand DNA molecule
gives rise to two identical molecules. A faithful copy can thus result from DNA
replication, all the more several ‘proof-reading’ mechanisms ensure that the copied
molecule is identical to the original one. Dawkins, as quoted above, is thus right in
underlining the extreme faithfulness of the replication process.

The genomes incur successive replications performed at time intervals of the same
order of magnitude as the lifetimes of living beings, but they are faithfully conserved
during the inconceivably long time intervals of the geological scale, thus after a
huge number of replications. It is now established that the origin of life has been a
single event which occurred at least 3.5 (maybe 3.8) billion years ago. By the mere
strength of his thought, Darwin (1809–1882) may be credited for having realized
how deep were geological times, as well as the unicity of life on Earth despite the
astonishing variety of its manifestations. The evidence that DNA is the support of
heredity for all living beings, with moreover a common rule for converting DNA
into proteins: the ‘genetic code’ (which we prefer naming ‘genetic mapping’; see
Fig. C.3 in Appendix C), came not before a century later as a dazzling confirmation
of the unicity of life. As regards the depth of time, absolute datation tools were not
available to geologists before the XX-th century. Around 1900, lord Kelvin tried to
estimate the Earth’s age using arguments based on its cooling. He found a few tens

1 ‘Genome’ is intended to mean the whole sequence of base pairs borne by DNA molecules,
regardless of their possible function, and especially not restricted to genes.
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of million years, at most, to be compared with the modern estimate of 4.6 billion
years. The subsequent discovery of radioactivity provided both an explanation for
the Earth’s excess of internal heat and means for the absolute datation of geological
material.

However, at a timescale shorter by far than that of geology, say that of a human
life, random errors referred to as mutations are observed to occur in genomes of
somatic cells. Their effects on individual phenotypes are as dramatic as ageing or
cancer. They are due to many permanent causes, especially chemical reactants and
radiations of terrestrial, solar and cosmic origin. Cell membranes can efficiently
shield DNA molecules against chemical agents, but much less so against radiations.
The existence of such mutations blatantly contradicts the postulated conservation of
genomes at the timescale of geology by the agency of the genomes of germinal cells.
If mutations are as frequent as to have observable effects at a short timescale, merely
copying genomes, however faithfully, cannot secure their long-term conservation,
in contradiction with Dawkins’ statement quoted above. This obvious remark is
fully confirmed by information theory, which shows that the channel capacity of
DNA vanishes as time passes. We present below (Sect. 8.1.2) the computation of an
upper bound on the capacity of the genomic channel, based for lack of precise data
on unrealistic assumptions which nevertheless result in greatly overestimating the
capacity. It turns out that this upper bound exponentially decreases with time. This
bound depends on the error rate in genomes. An attempt to estimate it is made in
Sect. 8.1.2, too. It can but be rough and it relies in part on our own hypotheses, yet
using it in the upper bound expression gives the expected order of magnitude for the
decrease of DNA capacity.

In order to illustrate by a simple example how comparatively infrequent but cumu-
lative errors quickly destroy the information contained in a replicated text, a 72-letter
sentence has been successively replicated 42 times with a single letter, chosen at ran-
dom, replaced by an arbitrary one of the same alphabet at each replication (the space
which separates words is dealt with as a letter of the alphabet, thus assumed to contain
27 symbols; it has been represented as a tilde in the example). The result is shown in
Fig. 8.1. The number of letters in the sentence, 72, and the number of replications,
42, are both arbitrary and were chosen so as to fill in a whole page.

Of course, the replicated sentence is much shorter than actual genomes and the
assumed error frequency is much larger than in reality, but the brevity of the former
(very roughly) compensates for the excess of the latter, and the number of successive
genome replications to be considered in heredity is much larger. This example is
just intended to show the progressive degradation of an initial message. The first
steps seem to have little impact on the message but the accumulation of errors soon
makes it impossible to guess what the initial message was. A similar final result could
of course be obtained through drawing at random 42 letters of the initial message
and substituting for each of them an arbitrary letter. No wonder then that the initial
message becomes incomprehensible.

As the only possible way for conciliating the long-term conservation of genomes
and the existence of comparatively frequent mutations, we are led to assume that
genomes are endowed with an intrinsic error-correction ability which, moreover,
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Fig. 8.1 An example of replications with symbol errors

unequally protects the different parts of the genome. We formulate these assumptions
with more detail in Sect. 8.1.3. We may already notice that they are actually not
entirely foreign to the biological literature. Rather, they make explicit more or less
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implicit ideas it contains. Biologists often assume that mutations are not evenly
distributed within genomes, or that organisms have some control on the mutation
rate. Such assumptions actually imply that genomic error-correcting codes exist.
Insofar as this assumption remained implicit, biologists did not realize its importance,
especially as regards its consequences for the living world as a whole, which will be
briefly expounded in Sect. 8.2 below.

As far as I know, the hypothesis that genomes are endowed with error-correction
ability was first formulated by Donald Forsdyke (1981). He suggested that the genes
of eukaryotes are similar to words of a code in systematic form, where the introns are
made of check symbols associated with an information message borne by the exons.
We present below (Sect. 8.4) arguments in favour to this interesting hypothesis.

Other attempts were made later, for instance (Rzeszowska-Wolny 1983;
Liebovitch et al. 1996). Neither the theory and practice of error-correcting codes,
nor the knowledge of genomes, were advanced enough when these studies were
made to enable reaching clear conclusions as regards the existence of genomic
error-correcting codes. Moreover, the researches on such topics are necessarily trans-
disciplinary hence difficult. It was especially hard for biologists to get a clear idea of
error-correcting codes when most of the literature published about them was basi-
cally algebraic and rather opaque for non-mathematicians. Since these studies failed
to uncover genomic error-correcting codes, hasty or lay readers understood that such
codes do not exist although their failure was due to assuming simplistic and in-
adequate coding schemes. The prejudices thus created, as usual, are unfortunately
long-lasting. Our statement that genomic error-correcting codes exist results from
a logical necessity, and guessing what they are and how they work needs matching
Nature’s inventiveness: an impossible challenge since, according to Jerome Wies-
ner, ‘no one is visionary enough to match reality’. The identification of genomic
error-correcting codes remains indeed an open problem for lack of experimental
data although some guesses can be made (see Sect. 8.4).

8.1.2 An Upper Bound on the DNA Channel Capacity

Let us first of all notice that the symbol errors are cumulative: regardless of the
possible variation of their frequency of occurrence, the number of such errors which
affect the genome is an increasing function of time. Precisely computing the DNA
capacity is impossible for lack of several data which are not available. It is possible
however to compute an upper bound of this capacity, which is easily shown to
vanish with time. We may thus assert that, a fortiori, the channel capacity of DNA,
in the information-theoretic meaning, does so, which dramatically confirms that it
is actually unable to communicate the genetic information through geological time
intervals.

The symbol errors may consist of erasures, substitutions, deletions, or insertions.
‘Erasure’means that a symbol foreign to the alphabet is substituted for the correct one;
‘substitution’ means that a symbol of the alphabet different from the correct one is
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substituted for it; ‘deletion’means that that one or several symbols are removed from
the given sequence, and ‘insertion’ that spurious symbol(s) are appended somewhere
in it. The proportion of each type is unknown, although the substitutions are probably
the most frequent. However, we can compute an upper bound of the genome capacity
if we assume that all errors are of the mildest type, i.e., consist of erasures. In the case
of an erasure the received symbol is not recognized as one of the alphabet symbols
but is not mistaken for one of them (see Sect. 5.1). The decrease of capacity that
erasures entail is significantly less than that resulting from substitutions (roughly
speaking, a single substitution is as harmful as two erasures in the binary case; see
Sect. 5.2). We moreover take account of the redundancy provided by the availability
of two complementary strands in the capacity computation. The true capacity is thus
grossly overestimated. It turns out that the computed upper bound is a vanishing
function of time, so a fortiori the true capacity has the same behaviour.

As regards the alphabet size, it would seem self-obvious that it should be 4, i.e.,
equal to the number of nucleotides, but it is possible that other alphabet sizes are
relevant. For example, a binary alphabet results in distinguishing only the chemical
structure, purine (R) or pyrimidine (Y), of the nucleic bases. It may be also that
blocks of three nucleotides (as in the ‘genetic code’) are relevant, then defining a 64-
symbol alphabet. It is why we denote the alphabet size by α, leaving indeterminate
its actual value.

For computing an upper bound on the actual capacity of DNA, we consider the
capacity of an α-ary erasure channel such that during the infinitesimal time interval
dt , the probability of an erasure is νdt , where ν denotes the erasure frequency. For
simplicity’s sake we assume that the frequency ν is constant and that the symbol
erasures are independent events. Then the probability of erasure as a function of
time, e(t), is easily shown to be:

e(t) = 1 − exp (− νt). (8.1)

In order to take into account the availability of two complementary strands, we
consider a pair of complementary nucleotides as erased only if both are erased.
Assuming the erasure of a symbol to occur independently in the two strands, the
erasure of a complementary pair occurs with a probability which equals the square
of the probability of erasure in a single strand, namely e2(t), where e(t) is given by
Eq. (8.1).

The capacity of single-strand DNA in the presence of erasures only is easily shown
to be Cα,er = (1 − δ) log2 (α) binary units, where α is the alphabet size and δ is the
erasure probability (see Sect. 5.2). For double-strand DNA we have δ = e2(t), where
e(t) is given by Eq. (8.1), so the capacity Cα,er,ds of a complementary pair is:

Cα,er,ds = exp (− νt)[2 − exp (− νt)] log2 (α) (8.2)

binary units. This function is represented in the figure below assuming α = 2.
The hypotheses which were made entail that this expression grossly overestimates

the actual DNA capacity. This upper bound is an exponentially decreasing function
of the product τ = νt , which can be interpreted as a measure of time using as unit the
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Fig. 8.2 Upper bound on the DNA capacity as a function of time for α = 2. The unit in the
horizontal (time) axis is τ = 1/ν, where ν denotes the erasure frequency

reciprocal of the error frequency, 1/ν. The channel degrades with time and becomes
useless after a time interval much less than τ if no means is available for correcting
errors. (Fig. 8.2)

We try now to roughly estimate the error frequency ν. To this end we rely on pub-
lished data on the mutation rate in humans, assuming that it does not significantly
differ from a species to another. This rate is estimated to about 2×10−8 mutation per
nucleotide and per generation (Nachman 2004; Kondrashov 2003), or about 10−9

mutation per nucleotide and per year. According to an assumption intended to com-
plement our subsidiary hypothesis (see Sect. 8.1.4), a fraction μ of the nucleotides
remains uncoded. We may thus think that only the errors occurring in the uncoded
fraction significantly contribute in the observed error rate, so the mutation rate before
correction is the observed rate divided by μ. Taking μ = 10−3 results in ν ≈ 10−6

mutation per nucleotide and per year. The time unit above, τ = 1/ν, is thus about a
million years (we refer to this result as the ‘Haldane-Kondrashov estimate’). This is a
short time interval at the geological scale (although it exceeds by far any experience
humans can have of time), so DNA is actually an ephemeral memory. Notice that a
similar conclusion obtains for any ‘permanent’ memory incurring random errors at
a nonzero frequency: in adamant words, no memory is permanent.

8.1.3 Main Hypothesis: Genomic Error-Correcting
Codes must Exist

The engineering experience, confirmed by information theory, tells that the contra-
diction between frequent mutations and very faithful conservation just pointed out
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can only be solved by assuming that genomes are actually resilient to casual errors.
That this is possible is asserted by the fundamental theorem of channel coding (see
Sect. 5.4 above). This theorem states, rather paradoxically, that an errorless commu-
nication is possible over a channel affected by errors. More precisely, the probability
of a communication error over such a channel can be made vanishingly small by the
use of appropriate error-correcting means, provided there is enough redundancy for
ensuring that the source entropy does not exceed the channel capacity. This result of
capital importance is unfortunately not known outside the communication engineer-
ing community. The engineering means which practically implement the resilience
to errors as promised by the theory are referred to as error-correcting codes. An ex-
ample of such a code has been given in Sects. 3.4.2 and 5.5 contains a brief discussion
of a few error-correcting codes. None of the modern communication systems like
mobile phone or digital television would exist without sophisticated error-correcting
codes.

Let us mention a lexical difficulty before proceeding further. Conservation of
genomes over geological times is a major fact of life. The existence of genomic
error-correcting codes is a mandatory condition dictated by information theory for
securing it, despite the occurrence of mutations at a much shorter timescale, which
is another major fact of life. That genomic error-correcting codes exist is thus an
unescapable conclusion. We nevertheless refer to it as a hypothesis, despite the spec-
ulative connotation of the word, since no one can yet exhibit means of genomic error
correction. More precisely, although many encoding processes can be identified
as potentially error-correcting, the mechanisms which perform the regeneration of
genomes are still unknown. Their experimental identification is obviously a difficult
task which needs that molecular biologists and communication engineers closely
collaborate. We think however that the word ‘hypothesis’ fails to express the com-
pelling character of the statement since information theory leaves no alternative to it.
We nevertheless use it for lack of a more appropriated one. ‘Mandatory hypothesis’
would perhaps be better, but looks too much like an oxymoron.

8.1.4 Subsidiary Hypothesis: Nested Codes

The existence of genomic error-correcting codes, our main hypothesis, does not
suffice to fully account for the biological reality. It turns out that some very old parts
of genomes are faithfully conserved, in contradiction with the decrease of DNA
capacity with time as already discussed2. For instance, the HOX genes are shared by
beings as far from each other in the evolution tree as flies and humans (whose last
common ancestor lived more than half a billion years ago). Interestingly, some parts
of the genome outside the genes are also known to be very faithfully conserved.
It is thus necessary to further assume, as a subsidiary hypothesis, that a genomic
code unequally protects the genetic data, so that the older is an information, the

2 This remark alone entails that genomic error-correcting codes are needed.
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more faithfully it is conserved. We assume it is organized as a system of ‘nested
codes’, made of successive component codes encoding messages made of already
encoded sequences to which new information symbols have been appended. Then the
assumed error-correcting nested system may be described according to the fortress
metaphor, where a component code is depicted as a wall which protects what is
inside it against outside attackers. The more numerous walls enclose an information
message, the better it is protected. Notice that a very efficient protection of the most
central information does not demand very efficient individual codes: the multiplicity
of enclosing walls is much safer than each of them separately. Assuming they were
built successively during geological ages accounts for the better protection of older
information. This scheme is made compatible with crossing-over, hence with sexual
reproduction, by further assuming that the most lately appended information message
has been left uncoded and that it concerns only the small fraction of the total genome
which accounts for individual differences among the members of a species.

Any symbol in the genome which is not left uncoded belongs to at least one
component code. The deepest (and oldest) component code of an l-layer nested
system will be denoted by C1 and the following ones by C2, . . ., Cl . A symbol which
belongs to the component code Ci also belongs to Ci+1, . . ., Cl . Roughly speaking,
we may think of the words of Ci as distant of at least di in the Hamming space, where
di is the cumulated minimum distance of codes C1, C2, . . ., Cl . These distances form
a decreasing sequence: d1 > d2 > . . . > dl > 1.

As a typical example, we may assume that all component codes are binary and
have the same rate R. We define their common expansion factor as λ = 1/R. We also
assume that the information messages appended to the result of the previous encoding
at each coding step have all the same length, say k bits. At the deepest coding level
(step 1) a first k-bit information message is encoded into a λk-bit word. At the next
step, a new k-bit information message is appended to the word which results from
the previous encoding, and this whole message is encoded with the expansion factor
λ, resulting in a word of length λ(λ+ 1)k. The codeword length at the encoding step
i, similarly, is λ(

∑i
0 λi)k = λ(λi+1 − 1)k/(λ − 1). The total number of information

bits at step i is merely (i+1)k since k new information bits are appended at each step,
hence the cumulated expansion factor at step i is �i = λ(λi+1 − 1)/(λ − 1)(i + 1),
an increasing function of i.

Increasing the number of component codes of the nested system considered here
thus results not only in an increase of the overall code length, but in an increase of
the overall redundancy since �i increases with i. One easily checks that avoiding to
increase the overall code redundancy necessarily implies the use of component codes
with an expansion factor λi which tends to 1 as i increases. Then the component codes
become the less efficient, the larger i, at the expense of the overall efficiency. We
may thus think of the above example as typical, and consider that the simultaneous
increase in length and redundancy as the number i of component codes increases
generally occurs in a nested system.

None of the assumptions which we made to illustrate the nested system in Fig. 8.3
is mandatory. It is not necessary to assume that the alphabet is binary in all component
codes of the nested system, not even that it is the same for all. Its size can be different
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Fig. 8.3 The proposed system of nested codes represented according to the fortress metaphor. A
code Cj , j = 1, 2, 3, is represented as a closed wall which protects what is inside it. I1, I2, I3 and I4

are successive information messages. I1 is protected by 3 codes, I2 by 2 codes, I3 by a single code
and I4 is left uncoded

from a coding layer to another one: a newly performed encoding may well deal with
some extension of the information message, i.e., consider blocks of m successive
α-ary symbols as symbols of an alphabet of size αm. The codes do not need to be
in systematic form and, if they are, the location of the information bits is arbitrary.
Even the condition that the dimension ki of each code is larger than the codeword
length of the previous coding layer has not to be strictly satisfied. It suffices that the
encoding performed at the j -th step brings some further protection to the message
which has already been encoded at the previous steps. Moreover, the codes actually
used by nature do not result from an engineering design but likely belong to the
broader class of ‘soft codes’, as introduced above (Sect. 5.5.11). (Fig. 8.3)

8.2 Consequences of the Hypotheses Meet Biological Reality

It turns out that the main hypothesis (genomic error-correcting codes exist) and the
subsidiary one (these codes are organized as a nested system) suffice to account for
many basic and conspicuous features of the living world, which may be considered
as a strong, although indirect, proof of the hypotheses. Most of these features are
left unexplained by biology, being often taken as postulates. The consequences of
the hypotheses also suggest answers to still debated questions. Among features of
the living world to which the above hypotheses provide an explanation, let us briefly
mention the following ones.

8.2.1 Genomes are Redundant

A rough estimate of the number of past and extant species is 109. A genome length of
15 base pairs would thus suffice to endow each of these species with its own unique
genome since 415 = 1, 073, 741, 824 > 109. Of course, genomes are not mere labels
and act as recipes for building phenotypes. We already noticed in Sec. 6.4 that a
genome 133 base-pairs long would suffice to label each of the 1080 or so atoms of the
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visible universe, since 4133 ≈ 1080. In contrast, the shortest genomes of viruses are a
few thousands base-pairs (b.p.) long. That of bacterial genomes is of a few millions
b.p., that of animals and plants range from 108 to more than 1011 b.p. (the human
genome, for instance, is approximately 3.2 × 109 b.p. long and is far from being the
longest). Even the shortest genomes are by far much longer than the strict minimum.
There is thus ample room for redundancy, a necessary feature of error-correcting
codes.

We may indeed think of a genome as made of three parts: (1) an information
message, (2) redundant symbols associated with this message, and possibly (3)
symbols unrelated to the information message and not involved in the molecular
processes which eventually result in the construction of a phenotype. Parts (1) and
(2) would constitute together according to our main hypothesis a word of an error-
correcting code in systematic form. Although it may reasonably be conjectured that
some parts of eukaryotic genomes are indeed codewords in systematic form (see
Sect. 8.4), it would be utterly restrictive to assume that a genomic error-correcting
code is always so. It needs only to be redundant. Parts (1) and (2) thus need not be
distinct. It suffices that they constitute together the output sequence of a redundant
source, i.e., of entropy per symbol, expressed using the size α of the alphabet as
unit, less than unity. As regards part (3), biologists have long believed that, in many
species, much of the DNA is devoid of any function, being parasitic or fossil, and
dubbed it ‘junk DNA’. However, ‘of unknown use’ does not mean ‘useless’, and
an increasing number of parts of DNA believed to be non-functional are actually
found to participate in molecular processes, and especially to be transcribed into
short RNA molecules. In any way, one should keep in mind that all the symbols of
a codeword both participate in, and benefit from, the resilience to casual errors that
encoding provides: sequences are conserved only insofar as they contribute in their
own conservation. Maybe there is no junk DNA at all in genomes, although DNA
seems to be very ‘cheap’. It is possible that some DNA sequences, e.g., made of short
motifs repeated many times, merely act as ‘space-keepers’, ensuring a separation
along the sequence of nucleotides which is needed by, or useful to, the encoding
process.

The existence of constraints incurred by nucleic-base sequences in DNA limits
their possible number, thereby introducing redundancy. For instance, in eukaryotic
cells double-strand DNA is closely packed in nucleosomes, wrapped around histone
octamers acting as spools. Bending constraints result. We suggest that genomic codes
are actually defined by such kind of constraints, not by mathematical equalities as
are engineering error-correcting codes; in other words, that they are soft codes in
the meaning of Sect. 5.5.11. Section 8.4 below contains a tentative, and presumably
very partial, list of such constraints. The autocorrelation and spectral properties of
genomes, too, confirm that they are redundant (Voss 1992; Arnéodo et al. 1998;
Audit et al. 2002).
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8.2.2 Discrete Species Exist with a Hierarchical Taxonomy

As a collection of n-symbol words, an error-correcting code is a k-dimensional subset
of the n-dimensional Hamming space, with k < n. For an efficient protection against
errors, these words need to be as distant as possible to each other according to the
Hamming metric. Associating a word of an error-correcting code with the genome
of some species results in species necessarily being discrete in the sense that their
genomes are separated from each other by large Hamming distances.

The subsidiary hypothesis moreover implies that the distance between the code-
words depends on the coding layer to which they belong in the nested system. The
deeper the layer, the more distant they are. Then species can be ordered according to
a hierarchical taxonomy. The further assumption that a small fraction of the genome
remains uncoded suffices to account for the difference between individuals inside a
species.

The main and subsidiary hypotheses then explain one of the most basic biological
facts, namely, the existence of distinct species and the possibility of their ordering
according to a hierarchical taxonomy. These properties appear as consequences of
both the necessity of conservation in the presence of errors and the effect of residual
errors. The concepts of species and of taxonomy have thus objective roots in the
error-correcting structure of genomes.

8.2.3 Nature Proceeds with Successive Generations

Constraints on regeneration timing We now assume, contrary to Sect. 8.1.2 which
was intended to obtain an upper bound of the DNA information-theoretic capacity,
that all errors consist of substitutions. Given a constant error frequency ν, the average
number of symbol errors at time �t with respect to the genome at instant 0, referred
to as the initial genome, is then n̄e = ν�t . The initial genome can be recovered with
certainty only provided the number of errors which actually occurred, ne, is less
than d/2 where d denotes the minimum Hamming distance of the genomic error-
correcting code. The correct recovery of the initial genome will thus be secured only
if the average number of errors n̄e = ν�t is significantly smaller than d/2. Then
successful decoding, resulting in the genome regeneration, will occur with high
probability. Failure to properly regenerate the genome would result in a genome at
a Hamming distance with respect to the initial one of at least d, to be referred to
as the ‘amplitude’ of the regeneration error. If the average number of errors ν�t is
large, its distribution around its mean n̄e is narrow as compared with n̄e. Then, the
probability of a regeneration error is very low when �t is small, but increasing �t up
to the vicinity of d/2ν results in a large increase of the regeneration error probability,
which tends to 1 if �t increases beyond this threshold. �t thus appears as a crucial
parameter which needs to be small enough for securing the genome regeneration with
high probability. Nature must indeed proceed with successive generations, actually
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interpreted as regenerations, separated by a sufficiently small time interval. For
values of �t larger than the threshold d/2ν, no stable species can exist.

The observed persistency of species shows that �t is actually small enough to
secure the conservation of their genomes. The cellular mechanisms which implement
the regeneration of the genome of some species belong to its phenotype, so we may
think of the proper adjustment of �t as a specific result of natural selection. Too
short this time interval would result in a very well conserved genome, with the
drawback of a lack of flexibility which may prevent the species to adapt itself to
environmental changes and lead it to extinction. If on the contrary this time interval is
too long, many comparatively short-lived species will appear but cannot last. Maybe
the Cambrian explosion resulted from too long a time interval between regenerations
not yet stabilized by natural selection to a shorter, more adequate, value.

The above analysis only relies on the main hypothesis that a genomic error-
correcting code exists. It has to be extended so as to take the subsidiary hypothesis
into account, i.e., the existence of a nested system of codes. First of all, a fraction
of symbols is assumed not to belong to any error-correcting code and thus to escape
regeneration. The remainder of the genome belongs to an l-layer nested system as
described in Sect. 8.1.4 which has as minimum distance the smallest of the cumulated
distances, denoted by dl−1. Instead of comparing the number ne of occurring symbol
errors with the single threshold dl−1/2, we locate it within the sequence of half the
cumulated minimum distances of the component codes. We assume that di/2 <

ne < di−1/2, an event the less probable, the smaller is i. The genome then incurs a
regeneration error of amplitude equal to, or slightly larger than, di−1. Thus the larger
the number of symbol errors ne, the lower the probability of a regeneration error, but
the larger its amplitude when it occurs.

Regeneration and replication On the one hand, the conservation of a genome
endowed with an error-correcting code needs its (almost) periodic regeneration in
order to avoid that the cumulated number of symbol errors exceeds the correction
ability of the code. On the other hand, it is a trivial fact that Nature proceeds with
successive generations at an (almost) periodic pace for a given species. Assuming
that genomes are endowed with error-correcting codes, the need expressed by the first
statement may explain the fact asserted by the second one. In other words, Nature
proceeds with successive regenerations made possible by the existence of a genomic
error-correcting code and needed to secure the genome conservation.

The existence of successive generations is generally thought of as resulting from
the tendency of living beings to proliferate. Then, genome replication is the main
function which has to be performed. According to the point of view defended here,
the mere template-replication made possible by the double helix structure of DNA
does not suffice to ensure the long-term conservation of genomes but should be
complemented with the regeneration process. It is thus plausible to assume that
regeneration and template-replication are jointly performed and, for instance, this
has been assumed in the ‘toy living world’ analyzed for the purpose of illustration in
Sect. 8.3 below. However, it is by no means necessary that they are jointly performed.
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The functions of template-replication and regeneration are indeed conceptually
distinct. Moreover, regeneration is much more complex than mere replication hence
more costly in some sense, and is necessary but for long-term conservation. It is
thus possible, for instance, that the template-replication is frequently, almost pe-
riodically, performed while regeneration is more infrequent, possibly triggered by
external events in some instances. Assuming it is so could maybe explain epigenetic
phenomena, as those reported in (Lolle et al. 2005). We now examine how these
functions could be separately performed.

Both the functions of regeneration and template-replication are necessary for a
unicellular being and may be jointly performed or not. Their dissociation is more
plausible in multicellular beings. We may think of the comparatively few germinal
cells as specialized in the genome conservation, at variance with the somatic cells.
Genome regeneration is performed in germinal cells only and it may be presumed
that it is effected during meiosis (or, maybe, at least in part during fertilization).
Performing it for all somatic cells would be costly and unnecessary since the con-
servation of genomes can be secured by the regeneration of the genome in germinal
cells only. Then accumulating mutations in somatic cells eventually results in the
death of individual phenotypes.

8.2.4 Evolution is Contingent and Saltationist

Assuming that the encoded part of the genome uniquely corresponds to a species
entails that a new species can originate in a regeneration error. In this case, the new
genome is at least at the minimum Hamming distance of the code apart from the
original one. A regeneration error is thus a potential speciation mechanism, besides
the already known ones. More precisely, such an error is at the origin of the genome
variation which results in a target of Darwinian selection. We may deduce from
this that evolution is contingent and saltationist, at least as far as it results from
regeneration errors, since then it depends on chance events and proceeds by jumps.

Assuming that species originate in regeneration errors hints at their contingency.
A regeneration error is indeed a chance event, namely, the wrong recovery of a
codeword, but each of its symbols is not chosen at random. This suffices to refute
arguments from the ‘intelligent design’ upholders on the improbability of errors
simultaneously affecting two different nucleotides. The probability of two simulta-
neous errors equals the square of the probability of error in a single symbol only
provided the symbol errors are independent events, and they are not so.

Species do not solely originate in regeneration errors. Transpositions, chromo-
some rearrangements, and integration of genetic material of outer origin, especially
viral, are already known mechanisms which deeply modify genomes. The setting up
of a new code in the nested system assumed according to the subsidiary hypothe-
sis necessarily results from an event of this kind, referred to as horizontal genomic
transfer. A better knowledge of the genomic error-correcting codes will be necessary
in order to understand their possible connection with such phenomena.
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As regards saltationism, let again ne denote the number of symbol errors which
affected the genome before its regeneration. The event di/2 < ne < di−1/2 results
in a regeneration error of amplitude at least di−1, where di denotes as above the
cumulated Hamming distance associated with the i-th component code in the nested
system (with 1 ≤ i ≤ l). The probability of its occurrence is the lower, the smaller i.
The frequency and amplitude of evolutive jumps thus depend on the layer depth i in
the nested system. The deeper this layer, the less frequent but of larger amplitude is
a jump. Peripheral layers are thus concerned with microevolution, deep layers with
macroevolution. Beyond the dichotomy micro/macro, intermediate layers moreover
provide gradual steps. The subsidiary hypothesis moreover implies that the younger
a species, the more numerous coding layers in the nested system encode its genome.
Then the complexity, the longevity (more precisely, the time interval between gener-
ations) and the diversity of individuals increase as the geological age of their species
diminishes. Compare in this respect nematode worms and vertebrates.

Many biologists have an almost religious faith in the power of Darwinian selec-
tion and tend to use it in order to explain everything in the living world. It should
however be underlined that its targets result from variations in genomes. Assuming
that genomic error-correcting codes exist, these variations take the form of error pat-
terns due to wrong regenerations. The weight of such error patterns is the largest, the
deeper the coding layer involved; it reduces to a single nucleotide only if it has been
left uncoded. This may explain phenomena which contradict Darwin’s hypothesis
of gradual evolution. To give a single example, Jean-Henri Fabre observed in his
Souvenirs entomologiques (Fabre 1880) a female insect (a solitary wasp) that stings
a spider much bigger than her (a tarentula) at a very precise point of its mouth so
as to disable its venomous hooks. She then paralyses the spider by stinging nervous
ganglia and lays her single egg inside it for feeding the larva after its hatching out.
Were she not immediately successful in disabling the venomous hooks, she would
be killed by the spider and her offspring would be lost. Could such an inherited
behaviour gradually appear?

Another striking fact is the existence of ‘hereditary invariants’, an example of
which is now given. The limbs of many vertebrates have 5-finger extremities. That
this fact does not result from an adaptation but from the persistency of a hereditary
information is rather obvious since the 5-finger pattern does not seem to have a high
selective value if compared with 4- or 6-finger ones. The limb extremities widely
differ from a species to another: think of the hand and the foot of a human, the
foot of a lizard or a mole, the fin of a dolphin or a whale, the wing of a bat . . .

All these 5-finger patterns are fitted to very diverse functions, namely prehension,
walking, running, digging, swimming, flying, . . . This adaptation results in consid-
erable variations in the form, size and mutual connection of bones, tendons, muscles,
skin . . . but within the 5-finger pattern. The 5-finger pattern could well result from a
single ‘regeneration error’ of the hypothesized genome channel-coding system and
thus appears as a hereditary invariant; the adaptation to specific functions involves
variations of less basic characters only. The first tetrapods had different patterns (7-
and 8-finger extremities) (Gould 1993). In ‘modern’ vertebrates, when the evolution
results in changing the number of fingers it only diminishes it (e.g., a horse has a
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single-finger leg), but both the paleontological ancestors and early embryonic forms
kept the 5-finger pattern.

There is an even deeper reason why selection alone cannot explain the conservation
of genomes: selection is a process of elimination so it would be very strange that
it could result in conservation, its exact contrary. A simple calculation shows in
Sect. 8.3 that, in the absence of error correction, the lifetime of genomes varies as
the inverse of their length. Selection can only further shorten it. This conclusion
has been established for the simplified model we refer to as ‘toy living world’, but it
obviously extends to the actual living world. As a consequence, long genomes would
not be conserved for long time intervals, which blatantly contradicts the existence of
very old species with an extremely long genome (e.g., the lungfish). The striking fact
here is that their conservation has actually been ensured against natural selection,
since their environment inevitably incurred many changes during the hundreds of
million years of the species life.

8.2.5 Evolution Trends Towards Increasing Complexity

No concept is more difficult and controversial in biology than complexity. Let us first
notice that the information-theoretic entropy can be used for objectively measuring
the biological complexity. Consider the nested system of error-correcting codes used
for encoding some genome. If we assume that an information message of a same
length k is inserted and encoded every time a new layer has set up, as in the simple
example described as typical in Sect. 8.1.4, then the genomic entropy is lk log2 (α)
binary units, where α denotes as above the alphabet size, so the number l of layers in
the nested system is proportional to the actual entropy of the genome (Battail 2010).
It may thus be thought of as a rough measure of the complexity of a species even if
the conditions of the example are not exactly satisfied.

It has long been rather naively believed that a trend towards increased complexity,
considered as a progress, was an intrinsic property of evolution, resulting in a hierar-
chical scale in which the more complex living things were considered as higher. This
simplistic view has progressively been challenged and is no longer that of contem-
porary biologists. A serious objection to it is that, since all extant species descend
from a common ancestor, the time needed to produce them is the same, regardless
of their actual complexity. Some species evolved towards extremely complex forms
but much others are simpler.

That evolution trends towards increased complexity can however be asserted in the
more precise and limited meaning that beings more complex than those previously
existing appeared during geological times (as a striking example, an estimated time
interval of almost two billion years separates the origin of life and the emergence of
the first multicellular being). Their survival implies that an increased complexity re-
sulted in selective advantages. Information theory provides a very general argument
in support to this statement. That the performance of codes in terms of error correc-
tion can be improved by lengthening them (a proven although paradoxical property)
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entails that increasing the genome length has in itself the evolutive advantage of
enabling a smaller regeneration error probability. Darwinian selection operating on
genomic error-correcting codes then results in the trend of evolution towards longer
genomes even if the redundancy rate remains constant. Besides the immediate ad-
vantage of possibly decreasing the regeneration error rate, longer genomes give room
for specifying more complex beings, which in turn can implement more sophisti-
cated means for coping with the evolutive pressure. Moreover, the improvement of
the error correction ability of longer codes is enhanced if their redundancy is si-
multaneously increased, as it occurs in the nested system described as typical in
Sect. 8.1.4.

The co-evolution of all related species progressively appeared as more relevant to
the history of life than the separate evolution of species since parasitism, commen-
salism and symbiosis played an important role in it. A species which ‘chose’ such
a way of life could advantageously incur simplifications favoured by natural selec-
tion. A very tough problem posed to biologists is thus to distinguish, among ‘simple’
living beings, if they are actually close to an ancestral form, or if they resulted from
simplifying a more complex one.

If lengthening a genome, for instance by setting up one more encoding layer
in the nested system, has the evolutive advantage of improving its conservation
by decreasing the probability of a regeneration error, it has also the drawback of
diminishing the replication speed. The ability to survive thanks to a low probability
of regeneration errors is an evolutive advantage, just as the ability of fast reproduction.
The ability of fast reproduction is limited by the genome length, which should be
as large as to specify the replication machinery (if we except viruses which use the
cellular machinery of their hosts for their own reproduction), so there is a lower limit
to this length. On the other hand, there is no limit to the evolutive advantage which
can result from the lengthening of genomes since the regeneration error probability
can be made arbitrarily small.

It is why, although successful genome lengthening occurred in the course of
evolution, shorter genomes also survived as being able to faster proliferate. Increasing
the genome length may be used to increase its information content, or the redundancy,
or both. Mainly increasing the redundancy is a conservative strategy which makes
the genome more resilient to errors at the expense of a decreased flexibility. Mainly
increasing the information content is a more risky strategy which, if successful, can
for instance enable conquering new ecological niches. We may think of any surviving
species as having realized some compromise between the replication speed which
decreases as the genome length increases, the resilience to casual errors provided
by redundancy, and the ability to increase its phenotypic complexity. In the typical
example of Sect. 8.1.4 the increase in genomic information quantity per encoding
layer is k, the redundancy can be measured by λ, and the whole length n = λ(λl+1 −
1)k/(λ − 1) depends on these parameters and on the total number l of encoding
layers.

Notice that the encoding of genomes according to the nested scheme described
above entails that they are very inhomogeneous. We noticed that some of the nu-
cleotides must remain uncoded. We also noticed that the oldest informations are
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encoded by several code layers. The orders of magnitude found in Sect. 6.4 have
moreover shown that these oldest informations are encoded with a very large average
redundancy. A nucleotide chosen at random within a large genome (say that of an
animal or a plant) can thus bear either a large information quantity if it is uncoded,
or jointly with very many others contribute to the encoding of old and very impor-
tant information. The information is thus in general very ‘diluted’ within a genome,
but very unequally so and all the more it is long. Incidentally, this shows that it is
meaningless to compare genomes as regards the percentage of nucleotides they have
in common.

8.2.6 Some Comments About the Consequence of the Hypotheses

It happens that certain scientific hypotheses, even among those which were accepted
after a slow maturation process, become a posteriori almost obvious. For instance,
the existence of atoms was still questioned at the beginning of the XX-th century.
We may think however that it is validated by the experience of daily life: how, else,
could be explained that separated, well delimited solid bodies exist? I do think that
the existence of genomic error-correcting codes is of this kind. Remember that, in
the absence of redundant coding, the number of different genomes of length n would
be 4n, with n of at least thousand and possibly equal to millions and even billions,
although a DNA molecule of length n = 133 suffices to count the atoms of the
visible universe! The genomes which correspond to viable beings are probably a tiny
fraction of all conceivable DNA sequences, but a random choice among them would
not result in definite species. Any living being would be a kind of chimera uniquely
combining disparate features. Moreover, the longest of these genomes would be very
short-lived at the evolutionary timescale (see Sect. 8.3). The living world would then
be an incomprehensible chaos.

To summarize, although we do not yet know how the genomic error-correcting
codes are implemented, we have two good reasons for accepting their existence. First
of all, because we have no other means for solving the blatant contradiction stated
above between the long-term conservation of genomes and the occurrence of com-
paratively frequent mutations. Second but not least, doing so enables deriving very
basic but yet unexplained properties of the living world. Maybe the most dramatic
one is the possibility of a taxonomy: any living being can be thought of as belonging
to one of comparatively few discrete species. The chaos if it were not so is hard to
imagine, and we would not exist for observing it. This is maybe the most convincing
argument in favour of genomic error-correcting codes.

A genome is intrinsically enduring. First of all, because it possesses literal means
which make it resilient to casual errors. Secondly, and now by the agency of seman-
tics, because it can specify the assembly of phenotypic machines which implement
its own regeneration by exploiting its intrinsic resilience properties.
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8.3 A Toy Living World

8.3.1 A Toy Living World in Order to Mimic the Real World

The necessity of a genomic error-correcting code has been asserted above as if a
single genome had to be conserved during geological time intervals. The many
successive replications of an ancestral genome and of its replicas actually generate a
population of individuals among which mutations result in differences. As we already
did in (Battail 2008), we now describe a world of sequences which mimics to some
extent heredity in the actual living world although it consists only of words of an
error-correcting code randomly subjected to symbol errors and then regenerated.
Starting with some ancestor, this ‘toy living world’ proliferates and evolves. It is
made of binary sequences of some given length n, to be referred to as ‘genomes’
(using quotes throughout reminds their fictitious character). It exhibits more and
more distinct ‘species’ as time passes and can be endowed with natural selection.
We begin with calculating its most significant parameters. Variants of this scheme
could easily be designed so as to endow these species with more realistic features,
e.g., with a hierarchical taxonomy thanks to nested codes, but we only deal with the
simplest case of a single code.

This model is extremely simplified, so as to eliminate all details which could
made its analysis difficult. (We think more generally that similarly considering ‘toy
living worlds’ would be very useful in many biological problems as enabling simple
computations of main parameters without being bothered with contingent details.)
Despite its simplicity, it possesses the main properties of the living world as regards
heredity. It is intended to mimic the successive replications of genomes subjected to
random mutations. Since we have shown that the genomes must be endowed with
error-correcting properties which ensure their conservation at the timescale of ge-
ology, the sequences we consider are words of an (n, k) error-correcting code of
minimum distance d . For comparison, we also deal with uncoded sequences of the
same length, i.e., made of n arbitrary symbols. Errors affect the symbols the same
way in both cases. We assume that the bits of the ‘genomes’ incur independent errors
with a constant probability psu. Duplication of a ‘genome’ will mean its regener-
ation followed with its copying if it is encoded, and its mere copying if it is not.
Duplication of each ‘genome’ originates in two identical ones which, except for
infrequent errors, are identical to the initial one. The toy living world results from
successive duplications of an ancestral ‘genome’ and of its descendants, and for sim-
plicity’s sake the duplications are assumed to occur periodically, simultaneously for
all ‘genomes’. The errors in the duplicated ‘genomes’entail that differences between
them occur. All identical ‘genomes’ in the toy living world are said to belong to a
same ‘species’and they constitute its ‘population’. We intend to statistically analyze
the toy living world as regards the number of species it contains. In a first step, we
assume that no limit is set to the population growth.

When a ‘genome’ incurred a mutation, its duplication results in two ‘genomes’
different from the initial one. If no error-correcting code is used, this means that



180 8 Heredity as a Communication Problem

at least one of the n bits of the original ‘genome’ is in error. The probability of
a mutation, Punc, is then the complement to 1 of the probability that no bit error
occurred in the ‘genome’: Punc = 1 − (1 − psu)n, an increasing function of the
‘genome’ length n. If the error-correcting code is used, a ‘genome’ at a Hamming
distance of at least d from the original one results from a regeneration error. Let
Pcod denote the probability of such a mutation. Contrary to the uncoded case, it can
be made arbitrarily small through the choice of a long and efficient enough code.
Moreover, Pcod can be made the smaller, the larger the codeword length n. No simple
expression of Pcod can be given. A plausible approximation of it for psu small enough
is Kp

d/2
su where K depends on the code. An efficient error-correcting code results in

Pcod being much smaller than Punc. P stands below for Pcod or Punc, depending on
an error-correcting code being used or not. Then the following calculations are valid
in both cases, which helps exhibiting the differences brought by encoding.

8.3.2 Permanence of a ‘Genome’

The probability that a ‘genome’ remains identical to itself after i successive dupli-
cations is (1 − P )i . In the uncoded case, this probability equals (1 − psu)ni . The
probability that a ‘genome’ incurs a mutation after exactly i successive errorless
duplications is P (1 − P )i . This is also the probability that a ‘genome’ lasts exactly
i�t , where �t is the time interval between two successive duplications. The average
lifetime L(P ) of a ‘genome’, expressed using �t as time unit, to be referred to in
the sequel as its permanence, is the expectation of its lifetime i affected with its
probability P (1 − P )i , namely

L(P ) =
∞∑

i=1

iP (1 − P )i = (1 − P )/P (8.3)

where the second equality results from deriving with respect to x the identity∑∞
i=0 xi = 1/(1 − x), which is true for 0 < x < 1, and letting x = 1 − P .
When an adequate error-correcting code is employed, the population contains

only codewords, the total number of which is 2k . Then P = Pcod, the probability
of a regeneration error, so the permanence of ‘genomes’ in this case is expressed
according to Eq. (8.3) as

Lcod = (1 − Pcod)/Pcod.

The probability Pcod can be made very small so 1/Pcod is a simple approximation to
the ‘genome’ permanence. It increases without limit if the error-correcting code is
as efficient as to make Pcod approach 0 as n approaches infinity. This is possible ac-
cording to the fundamental channel coding theorem provided the source entropy k/n

is less than the channel capacity, i.e., k/n < 1 −H2(psu). Then the average lifetime
of a ‘genome’ can be made arbitrarily large. The toy living world thus exhibits some
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of the most important properties of the living world which were shown in Sect. 8.2
to be consequences of the main hypothesis that genomic error-correcting codes ex-
ist: the existence of discrete species originating in infrequent but large regeneration
errors, and that their permanence is improved by increasing the ‘genome’ length.

On the contrary, no sharply defined species exist in the absence of error correction,
and their permanence decreases when the ‘genome’ length increases. Indeed, P =
Punc = 1 − (1 − psu)n in this case so the permanence reads in this case

Lunc = (1 − psu)n

1 − (1 − psu)n
. (8.4)

It is a decreasing function of the ‘genome’ length n, in sharp contrast with the

encoded case. For n = 1/psu, it equals 1/(e − 1) ≈ 0.582 . . . , where e denotes the
base to the natural logarithms, when psu approaches 0.

8.3.3 Populations of Individuals Within Species

The total number of ‘genomes’which remain identical to the ancestral one after i du-
plications, hence the population at that time of the species it generates, is [2(1−P )]i

in the average since we assume that each successful duplication results in two iden-
tical ‘genomes’. In the absence of any limiting factor, this number exponentially
increases only if P < 1/2. If no error-correcting code is used this inequality is
satisfied only for short enough ‘genomes’, i.e., such that Punc < 1/2, which implies
the inequality (1 − psu)n > 1/2, or n < −1/ log2 (1 − psu). An approximation of
− log2 (1 − psu) for psu small enough is psu/ ln (2), so stable species can exist only
if the ‘genome’ length n satisfies the inequality

n < ln (2)/psu ≈ 0.69/psu. (8.5)

For larger values of n, no definite species can exist. Moreover the larger n, the slower
the population grows.

If on the contrary an error-correcting code is used, Pcod can be made much smaller
than 1/2 and the persistence of a species is ensured by the exponential increase of
the population of individuals which share the same ‘genome’. We shall see later that,
for a plausible value of the symbol error probability psu, the upper limit (8.5) to the
length of ‘genomes’ is much too small to be compatible with that of actual genomes.
In the uncoded case, all the 2n possible n-bit ‘genomes’ eventually belong to the
population. The ancestral ‘genome’ is progressively forgotten in the sense that its
frequency in the population tends to become equal to that of any other n-tuple.

8.3.4 An Illustrative Simulation

For the purpose of illustration, we present here an example of a ‘toy living world’
using a very simple code and show some results of its simulation. Since the regen-
eration performance depends on the total number of erroneous symbols in a word,
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we may assume a very short ‘genome’ and a very high error rate. We ran simulations
assuming a binary ‘genome’ of length n = 7 and a symbol error rate of p = 0.1. (In
a realistic situation, a given regeneration error rate would be obtained by properly
adjusting the time interval �t between successive regenerations, for a given symbol
error frequency psu.) We used either no error-correcting code, or the very simple (7,4)
Hamming code which can correct all single errors. The probability of a regeneration
error is then Pcod = 1 − (1 − psu)7 − 7psu(1 − psu)6 which approximately equals
0.16 for psu = 0.1. We assume that no other events than replications-regenerations
occur. Especially, we assume that no natural selection limits the number of replicated
‘genomes’. Despite the extreme simplicity of this model and the lack of natural selec-
tion, i.e., the factor which is believed the most important for shaping the living world,
the obtained results mimic it rather well. Moreover, introducing natural selection as
below and taking account of the subsidiary hypothesis (see Sect. 8.1.4 above) would
refine the model and make it closer to the real living world, although of course still
oversimplified.

A drawback of the choice of the very short (7,4) Hamming code is that the average
number of erroneous bits in a received word is small, hence subject to large statistical
fluctuations. The stability of species in the simulated toy living world is thus much
less than that of a model more realistically involving much longer genomes. Apart
this important exception, we hope that the properties of the simulated toy living
world shed some light on those which may be expected from the main hypothesis
that genomic error-correcting codes exist.

The Hamming (7,4) code is the first invented nontrivial code in the late fourties
(Hamming 1950). It uses the binary alphabet (α = 2). The length of its words is
n = 7. It comprises only 24 = 16 words which are listed in Table 8.1 below and
numbered from 0 to 15:

Table 8.1 The 16 words of
the (7,4) Hamming code

0: 0 0 0 0 0 0 0 8: 0 0 0 1 1 0 1
1: 1 0 0 0 1 1 0 9: 1 0 0 1 0 1 1
2: 0 1 0 0 0 1 1 10: 0 1 0 1 1 1 0
3: 1 1 0 0 1 0 1 11: 1 1 0 1 0 0 0
4: 0 0 1 0 1 1 1 12: 0 0 1 1 0 1 0
5: 1 0 1 0 0 0 1 13: 1 0 1 1 1 0 0
6: 0 1 1 0 1 0 0 14: 0 1 1 1 0 0 1
7: 1 1 1 0 0 1 0 15: 1 1 1 1 1 1 1

Notice that the number made of the first four bits of each word is the binary
representation of the word number (with the less significant bits on the left), so this
code is in ‘systematic form’.

The constraints which tie together its bits c1, c2, . . . , c7 are the parity-check
equations:

c1 ⊕ c3 ⊕ c4 ⊕ c5 = 0,

c1 ⊕ c2 ⊕ c3 ⊕ c6 = 0,

c2 ⊕ c3 ⊕ c4 ⊕ c7 = 0,

where ⊕ denotes addition modulo 2.
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This code has been designed according to a precise algebraic structure, but to
understand its error-correction ability, it suffices to notice that its minimum distance
is d = 3, so it can definitely correct any substitution of a single binary symbol for
its binary complement, or the erasure of any 2 binary symbols (see Chap. 5).

As an illustration of a hereditary process where a ‘genome’ is successively repli-
cated several times starting from an ancestral one, and of the introduction of an
error-correcting code in this process, we consider a ‘toy living world’whose ‘genome’
is binary and of very short length, namely 7. We assume that the error rate is very
high, namely p = 0.1, with the errors drawn at random independently of each other.
Then the probability that an error pattern of weight w occurs in a word of length 7
is P (w) = (7

w

)
pw(1 − p)7−w. The numerical values of P (w) are given in Table 8.2

below:

Table 8.2 Probability P of an error pattern of weight w
w 0 1 2 3 4 5 6 7
P 0.4782969 0.3720087 0.1240029 0.0229635 0.0025515 0.0001701 0.0000063 0.0000001

Assuming the ancestral ‘genome’ to be 1111111, we considered the evolution
which results from successive replications of this ‘genome’ in the presence of mu-
tations due to bit errors of probability 0.1 (simulated on a calculator), either without
error-correction or when the (7,4) Hamming code is employed. This code corrects all
error patterns with a single erroneous symbol. However, all error patterns involving
2 or more erroneous symbols result in a regeneration error pattern with at least 3
erroneous symbols. The ‘genealogical trees’ obtained in both cases are represented
in the following two figures.

A sample of the simulated evolution of the population of ‘genomes’ when no
error-correcting code is used is given in Fig. 8.4. The population of ‘genomes’ con-
tains more and more different individuals as the number of successive replications
increases. They are short-lived genomes and no distinct species can be observed.
The initial ‘genome’ rapidly ceases to be a majority in this population which, af-
ter a few replications, looks like a set of random words. When the (7,4) Hamming
error-correcting code is used, as depicted in Fig. 8.5, the initial ‘genome’ remains
present during a larger number of regenerations-replications. Regeneration errors
give rise to ‘genomes’ differing from the initial one by at least 3 symbols, which may
be interpreted as other ‘species’. They moreover exhibit the same permanence as the
initial ‘genome’.

Notice that Figs. 8.4 and 8.5 represent genealogical trees, the elements of which
are individuals. We consider as a ‘species’ the set of identical ‘genomes’ (the model
does not take into account the slight individual differences which exist in the real
world). One can deduce phyletic graphs from the genealogical trees by merging into
a single branch all branches which correspond to a same ‘genome’. Doing so for
the genealogical tree of the uncoded case, represented in Fig. 8.4, results in a rather
messy graph. The phyletic graph in the encoded case, deduced from the genealogical
tree of Fig. 8.5, is more interesting. It is drawn in Fig. 8.6. New species originate in
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Fig. 8.4 Genealogical tree of the toy living world, without error correction

regeneration errors, represented as dots in the figure. One notices that some branches
converge, so this graph is not a tree. The code of the example contains however very
few words so there is a high probability that distinct regeneration errors result in the
same ‘genome’, making such convergences likely events. This probability is much
lower for codes having more numerous words close to each other in terms of the
Hamming metric, except maybe for the very redundant codes in the innermost layers
of the nested system (see Sect. 8.1.4). This case excepted, it may be expected that
branch convergences are highly unlikely so all phyletic graphs met in practice assume
the shape of a tree: branch convergences are highly improbable, although not strictly
impossible.
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Fig. 8.5 Genealogical tree of the toy living world using the (7,4) Hamming code

The graph in Fig. 8.6 illustrates the relationship between error-correction coding
and evolution for the toy living world: new species originate in regeneration errors.
If we ignore the branch convergences (represented by arrows) which occur due
to the choice of a very short and simple code but would be very infrequent for a
more realistic code choice, this graph depicts the evolution as a radiative process
starting from the ancestral ‘genome’. Due to a regeneration error, a chance event,
the ‘genome’ of a new species is chosen among the codewords. Once a new species
has been created, it potentially lasts indefinitely (just as the ancestral one) since its
extinction due to mutations would imply the occurrence of simultaneous regeneration
errors in all the individuals of the species. Its probability is thus P

j

cod, where j
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Fig. 8.6 Phyletic graph associated with the genealogical tree of Fig. 8.5. Each ‘species’ is labelled
with the 4 leftmost bits of its ‘genome’, i.e., its information bits

denotes the number of individuals in the species and Pcod is the probability of a
regeneration error. Since replication is assumed to follow each regeneration, the
smallest possible value of j is 2. Moreover, j grows exponentially as time passes,
making the probability of extinction of a species due to mutations, P j

cod, a miraculous
event. Indeed, the extinction of a species can only occur when natural selection
operates on the associated phenotype; then, it depends on the probability Pnsel to be
now introduced and results from a differential lack of fitness.

8.3.5 Natural Selection in the Toy Living World

Many biologists think that the genome conservation is secured by natural selection
operating on populations. We now intend to show that this is false. Selection is a
process of elimination so one may deem strange that it could result in conservation,
its exact contrary. Analyzing the simple model to be now introduced shows indeed
that it is not so.

In order to make the toy living world resemble a bit more the real world, we
can try to take into account the effects of natural selection in its usual meaning. To
this end we introduce the probability Pnsel that a ‘genome’ is not selected, i.e., that
another cause than incurring a mutation an event of probability pmut, entails it is not
conserved. This cause may be that its support or the phenotype which contains it
is destroyed. Then the probability that a ‘genome’ remains identical to itself equals
(1−Pmut)(1−Pnsel) as the joint probability of two events assumed to be independent.
The probability Pncon that a ‘genome’ is not conserved is the complement to 1 of this
probability, namely:

Pncon = Pmut + Pnsel − PmutPnsel. (8.6)

The average lifetime of an individual genome would result from substituting
Pncon for P in (8.3), which diminishes the permanence if Pnsel is strictly positive.
The average population size after i duplications becomes [2(1 − Pncon)]i . Indeed,



8.4 Identifying Genomic Error-Correcting Codes 187

Pnsel would in the real world depend on many extrinsic factors like the amount of
available resources, the population size of the considered species but also of all
species ecologically related to it (predators, preys, commensals, pathogens, . . .) and
on physical factors of its environment. This multiplicity of factors would make Pnsel

not only very difficult to evaluate, but also rapidly variable as all species populations
vary. The lack of a reliable estimate of Pnsel would make the expressions of the
average lifetime L(Pncon) and of the average population size deriving from it of little
practical interest. However, the species having the smallest values of Pnsel would
clearly benefit from natural selection as thriving at the expense of the others, given
a finite amount of available resources, as expected.

Of course, this conclusion holds for the toy living world, but it shares with the
actual living world the main properties that its ‘genomes’ are subjected to errors
and replicated, so true genomes should obey Ineq. (8.5), too (up to a multiplicative
factor close to 1 accounting for the actual alphabet size). Using for psu the Haldane-
Kondrashov estimate referred to in Sect. 8.1.2, this condition becomes n < 3.45 ×
107. Many longer genomes exist in the actual living world and, moreover, there is no
upper limit to the genome length of stable species: some of the oldest species have
very long genomes. For instance, the lungfish genome contains about 1.4 × 1011

base pairs, hence is 4,000 times larger than the limit expressed by (8.5). It may be
concluded that a genomic error-correcting code must exist in the actual living world,
as assumed in Sect. 8.1.3.

We may notice, however, that the genome of prokaryotes is generally shorter than
the limit set by (8.5). This is consistent with species being less sharply defined in
prokaryotes (Margulis 1998). Their genome is presumably less efficiently protected
against casual errors than that of the eukaryotes, especially because the number of
components in their nested system of soft codes is smaller.

There is another reason why natural selection alone cannot account for the con-
servation of genomes. As being many-to-one (or surjective in the mathematical
parlance), the genetic mapping (depicted in Fig. C.3 in Appendix C) involves syn-
onymous codons. For instance the 6 codons UUA, UUG, CUU, CUC, CUA and
CUG ‘code’ for a single amino-acid: leucine. Only two single codons are in one-to-
one correspondence with an amino-acid, namely AUG for methionine and UGG for
tryptophan. Would the conservation of genomes rely only on the Darwinian selec-
tion of phenotypes, then they would be available only up to synonymy, i.e., genomes
differing in synonymous codons would be found in the members of a same species.
That it is not so shows that the means of genome conservation have to be found
elsewhere, besides the stronger arguments given above.

8.4 Identifying Genomic Error-Correcting Codes

Up to now, we have shown that:

1. Genomic error-correction codes must exist (main hypothesis).
2. These codes must unequally protect parts of genomes, the oldest ones being the

better protected. This is achieved by nested codes (subsidiary hypothesis).
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3. Assuming that nested genomic error-correcting codes exist has consequences
which turn out to be actual basic features of life left unexplained by mainstream
biology. Other consequences provide decisive arguments in debated issues.

Genomic error-correcting codes are not described in this book because they have
not yet been identified. The above reasonings rely on information theory and they do
not imply detailed biological mechanisms. Identifying the means which implement
error correction, in sharp contrast, is basically a problem of molecular biology.
Information-theoretic reasoning is no longer an appropriate tool so only molecular
biologists can solve the problem. Before they start searching for genomic error-
correction means, however, they should be convinced that doing so can be useful
to their discipline. Unfortunately, the only possible arguments to convince them are
borrowed from information theory, not from biology. We meet here a big problem of
transdisciplinary researches: each discipline developed its jargon and cultural habits
in isolation up to becoming closed on itself, unable to receive any idea from outside.
How is it possible to overcome the gap between increasingly specialized scientific
disciplines and make them communicate? As intended to connect information theory
and biology, the present book is hopefully a step in this direction.

It is possible that some experiments have already brought to light some of the
functions pertaining to the genome regeneration. If it is so, the biologists who did
these experiments were unable to identify them as elements of a solution, for lack of
being aware of the problem.

The above remarks do not mean that we can say nothing about genomic error-
correction codes. Information theory cannot be substituted for molecular biology,
of course, in order to identify genomic error-correcting means. However, it turns
out that some reflections inspired by information theory may help guessing what
the genomic error-correcting codes look like. We may first think of them as being
soft codes as defined in Sect. 5.5.11. Many biological constraints can indeed be
interpreted as defining soft codes and we may guess that they are actually useful
for ensuring the genome conservation. Even if these guesses are accepted as true,
however, they give no clue for solving the most difficult facet of the problem, namely,
how regeneration is performed by molecular machines.

It has been stated in Sect. 5.5 that an (n, k) error-correcting code, with k < n, is a
subset ofαk words among all possibleαn n-symbol sequences, whereα is the alphabet
size. This code is redundant since k is smaller than n. It can be defined by the list of
its αk words (as in Shannon’s random coding) or by an encoding rule which specifies
constraints that the codewords obey (as in any practical coding system). The only
constraints used in engineering are mathematical, being convenient as exactly defined
and easily implemented by electronic devices. Any set of constraints, however, results
in defining some subset of the αn n-symbol sequences, and this subset is endowed
with potential error-correction ability. Not only mathematical but physical-chemical
or linguistic constraints have this result. It is just for convenience that engineering
error-correcting codes are mathematically defined, but the basic reason why these
codes work is that they impose constraints on sequences. Error-correcting codes
defined by constraints of any kind, not necessarily mathematical, were considered
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as possible genomic codes, under the name of soft codes, in our paper (Battail 2001)
and in later works. We have already shown in the first part, Sect. 5.5.11, that soft
codes may be expected to be efficient error-correcting codes, although (and maybe
even because) they are not designed for this purpose.

Let us give some examples of possible genomic soft codes. In eukaryotic cells
physical-chemical (more precisely, steric) constraints are induced by the wrapping of
DNA molecules around histone octamers, as shown by their autocorrelation and spec-
tral properties (Voss 1992; Arnéodo et al. 1998; Audit et al. 2002). Other constraints,
besides the previous ones, are induced on DNA molecules when they ‘code’ for pro-
tein substructures like α-helices and β-sheets. Some sequences of amino-acids then
become forbidden as not compatible with these structures (Branden 1991), which
entails that the sequences of codons which code for forbidden amino-acid sequences
are themselves forbidden. The constraints due to wrapping around histone molecules
and due to forbidden codon sequences are cumulative, which means that they gener-
ate nested soft codes. Every time a ‘natural convention’establishes a correspondence
between two sets of objects otherwise unrelated, another layer of soft coding results
from the constraints obeyed by the newly connected set. In other words, ‘organic
codes’ in Barbieri’s meaning (Barbieri 2003) result in endowing DNA with nested
error-correcting soft codes. Moreover, as instructing the assembly of phenotypes,
genomes necessarily use some syntax which involves linguistic constraints. Besides
physical-chemical constraints, linguistic constraints too contribute ‘coding layers’
to the genomic nested soft codes. In order to account for the better conservation of
the oldest information (e.g., that borne by the HOX genes), it was suggested in (Bat-
tail 1997) and in later papers that the various constraints were successively introduced
during the ages so that the older is an information borne by DNA, the more numerous
coding layers protect it against errors. Then layers of nested soft codes that succes-
sively appeared during the geological ages strikingly resemble Barbieri’s organic
codes, although their existence is inferred here by information-theoretic arguments
based on how genomes can actually be conserved, while it is a deep reflection about
the main steps of biological evolution which led Barbieri to infer it (Barbieri 2003).

Having thus extended the concept of error-correcting codes so as to include soft
codes, the many constraints which affect genomes clearly entail that many genomic
soft codes exist, which moreover are nested within each other as expected according
to Sect. 8.1.4. An important question remains unanswered, however: are the con-
straints which define these codes actually exploited in order to regenerate genomes
affected by errors, and how? It turns out, as stated in Chap. 5, that regeneration is the
most difficult and critical step of the whole error-correcting process. As yet the molec-
ular machines which perform these tasks remain to be identified, a research which
obviously needs a close collaboration of communication engineers and molecular
biologists. Before such a collaboration can be settled, the latter should be con-
vinced of its interest, which implies they get some information-theoretic education
(Battail 2006).

Another hypothesis regarding genomic codes is worth considering although no
direct experimental proof of it has yet been given. We already mentioned the pio-
neering work of Donald Forsdyke suggesting that introns are made of check symbols
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associated with the message borne by the exons (Forsdyke 1981). This hypothesis is
quite plausible, since the exons bear the information which controls the synthesis of
the polypeptidic chain eventually becoming a protein. Then the introns are likely to
gather the corresponding check symbols. One can easily check whether eukaryotic
genes possess distance properties which may be expected from an error-correcting
code by comparing the variability of exons and introns in different evolutive sit-
uations, a very general approach since it involves no further assumption than the
existence of a code having some rather large minimum distance. This does not give
any clue about the code which is used, let alone its decoding, but provides a strong
argument in favour of Forsdyke’s hypothesis. The literature states that introns are
generally more variable than exons. A counter-example was however provided in
1995 by Forsdyke, who experimentally found that the exons are more variable than
the introns in genes which ‘code’ for snake venoms (Forsdyke 1995). It turns out that
the generally observed greater variability of introns and Forsdyke’s counter-example
can both be explained by the assumption that the system of exons and introns actu-
ally acts as a systematic error-correcting code where exons constitute the information
message and introns are made of the associated check symbols. Interpreted as a de-
coding error, a mutation occurs with large probability in favour of a codeword at
a Hamming distance from the original word equal to the minimum distance of the
code or slightly larger. If the exons ‘code’ for a protein of physiological importance,
which is by far the most usual case, it may be expected that only mutations with a
few errors within the exons, hence having no (which is possible since several distinct
codons may specify a same amino-acid) or little incidence on the protein, will survive
natural selection. Few errors being located in the exons, most of them will affect the
introns since the total number of errors is at least equal to the minimum distance of
the code.

In the case of genes which ‘code’ for snake venoms, the Darwinian selection does
not tend to conserve exons but on the contrary favours their mutation. The typical
preys of snakes are rodents. Snakes and rodents are involved in an ‘arms race’: some
rodents incur mutations which provide an immunity to snake venom, the population
of rodents with such mutations increases as they escape their main predators, and
the snakes are threatened with starvation unless mutations in their own genes make
their venom able to kill mutated rodents (Forsdyke 1995). The genes which ‘code’
for snake venoms are thus under ‘high evolutive pressure’: natural selection favours
mutated genes producing proteins as different as possible from the original ones.
In terms of the Hamming distance, much of the difference should thus be located
in the exons. The total number of symbol errors in exons and introns in the case
of decoding error being roughly constant for a given code (equal to the minimum
distance or slightly larger), introns are then much less variable, and it is what is
actually observed. These properties are precisely those which can be expected from
genes acting as systematic error-correcting codes in systematic form, which however
remain unknown as well as their decoding process. This may be understood as an
indirect evidence of their existence and an incentive to their experimental research.
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Chapter 9
Information is Specific to Life

Abstract It is argued in Chap. 9 that information is specific to life. The concept of
‘semantic feedback loops’ is first introduced in order to explain the onset of living
structures and their conservation. The basic fact is that certain proteins act as enzymes
which catalyze the operations which are needed for their own synthesis: transcription
of DNA into messenger or premessenger RNA, splicing out the introns (in the case
of eukaryotic cells) and translation as operated by the ribosome, i.e., synthesizing
proteins under the control of messenger RNA. This can be interpreted as a set of
interwoven feedback loops which all involve the genetic ‘code’ (or mapping). This
set of loops acts as a trap since, once closed, it keeps its structure. If any of its
parts fails, however, the whole system ceases operating. We refer to it as ‘semantic’
because the genetic mapping consists of a set of semantic rules. Hence, the set of
feedback loops implements the semantics which enables the assembly of proteins
(and more generally of phenotypes) in terms of the information that DNA bears. This
shows how information, as an abstract fundamental entity, controls the assembly of
physical structures. ‘Abstract’ should be understood here as opposed to physical,
since assuming that information is physical leads to results which contradict its
very definition. The set of semantic feedback loops, although each loop is closed,
does not prevent the lengthening of genomes by horizontal genetic transfer, hence is
compatible with evolution. The last section of this chapter examines the achievements
of Nature as an engineer and pleads for a collaboration of engineers and biologists.

9.1 Information and Life are Indissolubly Linked

That communication, hence information, has a paramount importance in the living
world is rather obvious. Would no communications exist at all within cells, organs and
organisms, life processes would shortly stop. One may wonder why understanding
that communication is specific to life did not lead biologists to get deeply interested
in it. The only possible explanation is that they did not (and still do not) realize that
communication has become a matter of science, and information a scientific entity.
Biology actually borrowed since its beginning its methods from already established
sciences having objects less complex than life, especially physics and chemistry
which successfully account for the inanimate world. The science of communication,
originating in the middle of the XX-th century, had not yet a significant influence on
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biology because of the linguistic and institutional barriers which hinder transdisci-
plinary communication. Now in the cultural meaning of the word, communication
is at the heart of this epistemological problem. Biosemiotics is an attempt to inte-
grate a science of communication within biology, but semiotics fails to recognize
that literal communication is a necessary prerequisite to semantic communication
(Battail 2009a). Information theory appears here as an inescapable but yet missing
link.

In support to this statement, we may quote Dawkins who wrote in The blind
watchmaker, (Dawkins 1991):

If you want to understand life, don’t think about vibrant, throbbing gels and oozes, think
about information technology.

Notice however that the semi-conductor hardware is quite foreign to the enzyme-
catalyzed reactions which occur in the cell. It is not at the level of implementation
means that information technology resembles life, but as regards the algorithms
which are implemented. Thus, we can fully agree with the above quotation only if
‘theory’ is substituted for ‘technology’. Apart from this reservation, we may claim
that the present book complies with Dawkins’ recommendation.

There is even a stronger argument which makes information theory mandatory
for studying life. We’ll see in Sect. 10.2 that any living thing behaves as a Maxwell’s
demon. Such a demon can be interpreted as a means for locally converting physical
entropy into information (although the second law of thermodynamics remains glob-
ally in force). Since no Maxwell’s demon exists in the inanimate world, the living
world appears as the only place where information is recorded, processed, or used
in any way. We may thus claim that information is specific to the living world. This
statement is true only provided we include in the living world the artefacts created
by humans for recording, processing, or using information, just applying to the hu-
man species Dawkins’ concept of extended phenotype according to which the dam
that the beaver builds belongs to its extended phenotype (Dawkins 1982). We then
meet Henri Bergson’s statement ‘tools are like our organs (les outils sont comme
nos organes)’. In such artefacts, the relationship to information may be considered
as delegated to machines by humans. With this proviso, we may state that using or
not information defines the border between the objects of the living world and those
of the inanimate one (Battail 2009b). Stated otherwise, information delineates the
border between the living and the inanimate.

The concept of ‘semantic feedback’, to be introduced in the next section, will
help explicating the relation of information and life.

9.2 Semantic Feedback Loops

9.2.1 Semantic Feedback Loops and Genetic Mapping

Emphasis has been laid in Chap. 8 on the necessity of genome conservation. Besides
faithfully conserving themselves, the genomes instruct the assembly of phenotypes.
They need for doing so a molecular machinery which is itself a part of the phenotype,
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Fig. 9.1 Feedback loops in the genetic process. The arrows originating in ‘proteins’ denote en-
zymatic actions. The semantic feedback loop which pertains to the genetic mapping is drawn in
heavy lines. The scheme in (a) is the most basic one, pertaining to prokaryotic cells. For eukaryotic
cells where the genes involve exons which actually specify amino-acids and introns which must
be spliced out, the scheme in (b) derives from that in (a) by further including in it the function of
splicing and the corresponding feedback loop

especially the ribosome which implements the translation of the messenger RNA into
a polypeptidic chain through the agency of the ‘genetic code’ (which we preferably
name ‘genetic mapping’). The polypeptidic chains thus obtained eventually become
proteins by an appropriate folding. The permanence of life demands the conservation
of this molecular machinery as well as that of genomes. Moreover, the permanence
and unicity1 of the genetic mapping must be explained, as well as the fact that only
very few types of ribosomes exist in the whole living world.

Figure 9.1 is intended to schematically describe the genetic machinery as a whole
in two cases: the scheme at left (Fig. 9.1a) pertains to prokaryotic cells, while Fig. 9.1b
at right is a more complicated variant which accounts for the transition towards
eukaryotes. Both schemes pertain to a homogeneous population of living objects (say,
a population of cells descending from a single ancestor), not to a single individual.

We first comment the most basic scheme of Fig. 9.1a. In the box labelled
‘regeneration and replication’, the function of replication is performed by the
physical-chemical means which, given a DNA molecule, result in the synthesis of
an identical molecule, thanks to its double-helix structure which enables using each
of its strings as a template for assembling a string identical to the other one. Each
newly assembled string is tied to the initial one, so the whole double-string molecule

1 Except for a few very old variants like that found in mitochondria.
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is duplicated. Moreover, several ‘proof-reading’ mechanisms correct possible copy-
ing errors. The function of regeneration consists of restoring the initial genome by
correcting casual errors, thus ensuring that the regenerated molecule is identical to
the original one and resulting in the expected genome conservation. If it is performed
frequently enough, hence if the cumulated number of errors which occurred since
the last regeneration is low enough, the regeneration is successful thanks to the ge-
nomic error-correcting code shown to be necessary in Sect. 8.1.3. Notice that the
upper loop, which involves DNA replication, concerns the population as a whole as
having generated each of the individuals which compose it. In contrast, any of the
individuals which belong to it possesses the lower loops.

Some parts of a DNA molecule referred to as genes are transcribed into messenger
RNA (mRNA) molecules. An mRNA molecule is the copy of a string of the gene DNA
except that a single symbol in the nucleotide alphabet is changed: uracil U replaces
thymine T (uracil only differs from thymine by a hydrogen atom being substituted for
its methyl group). The mRNA molecules then instruct the assembly of polypeptidic
chains, according to the operation of translation, which implements the genetic
mapping of nucleotide triplets of RNA, or codons, into a set of 20 amino-acids.
The successively selected amino-acids are linked to each other in the order of the
codons in the mRNA. The generated polypeptidic chains eventually fold into proteins
which lead to the construction of a phenotype, some of them acting as enzymes. The
genetic mapping is represented in Fig. C.3 in Appendix C. The correspondences that
this chart establishes between any codon and one among 20 amino-acids (or the stop
instruction) are interpreted as semantic rules.

A fairly large number of proteins are produced by a living being if we except
viruses (say, at least thousand or so for a prokaryote, a few tens of thousands for a
eukaryote). Some of these proteins act as enzymes which perform all the enumerated
functions: replication, regeneration2, transcription, and translation. The very exis-
tence of these proteins thus depends not only on their specification by genes (through
the agency of mRNA molecules) but on their own enzymatic action which makes
possible the functions involved in the feedback loops of Fig. 9.1a. The genetic map-
ping is implemented in the box labelled ‘translation’which is common to the loops of
Fig. 9.1a involving ‘replication and regeneration’, ‘transcription’ and ‘translation’.
We now intend to discuss the significance of this fact.

Niels Bohr thought that the genetic mapping could be used as the starting point
of any research about life. For Marcello Barbieri, it is the most basic organic code,
an organic code being intended as a set of correspondence rules between sequences
of elements otherwise unrelated (Barbieri 2003). Barbieri noticed that the genetic
mapping implies ‘coding by convention’, where the correspondence rules do not
result from any physical or chemical law, but appear as arbitrary as the relations
a language establishes between words and outer objects. The genetic mapping, a
very basic and universal biological fact, thus shares this property with the most

2 The mechanisms which perform genome regeneration thanks to the genomic error-correcting
codes have not yet been identified. However, all the functions of molecular biology need enzymes
as catalysts; this one may safely be assumed not to be an exception.
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emblematic ‘code’ of mankind, which is at the root of the human culture! This
remark has obviously paramount scientific and philosophical consequences, but was
rather ignored by mainstream biology. Barbieri moreover showed that the genetic
mapping is only the first of a number of organic codes associated with the main
events of life evolution, which all similarly imply ‘coding by convention’.

We may think of the loops of Fig. 9.1a as implementing ‘semantic feedbacks’
since the genetic mapping, which consists of semantic rules, is an integral part of
them. Instead of stabilizing some parameter as in most engineering applications of
feedback, the semantic feedbacks of Fig. 9.1a stabilize the genetic mapping itself,
which explains its permanency and universality. The enzymes which enable the
operation of the loops of Fig. 9.1a are as old as the genetic mapping itself, so the
genes which ‘code’ for them are presumably very resilient to errors as encoded in the
innermost layer of the genomic system of nested codes hypothesized in Sect. 8.1.4.
Thus, their successful regeneration is a highly probable event. In the infrequent case
where their regeneration fails, all the process is aborted, but the mechanism which
implements the genetic mapping remains. Would a mutation change this mechanism,
the production of the enzymes needed for the operation of the loops would cease,
similarly leading to the process abortion.

The efficiency of the semantic feedbacks associated with the genetic mapping thus
depends on two factors: the faithful conservation of the genome, and the high speci-
ficity of the enzymes. The first one is ensured by the genomic error-correcting code,
and the second one by the semantics borne by the genome. Its improvement thus de-
pends on increased redundancy on the one hand, on increased information quantity
on the other hand, since according to the interpretation of information quantity given
in Sect. 4.2.1 more information quantity actually implies more semantic specificity.
Both imply a lengthening of the genome and suggest that their co-evolution resulted
in the good conservation of the molecular machinery as well as that of the genomic
message. This remark confirms our statement of Sect. 8.2.5 that the Darwinian evo-
lution resulted in lengthening certain genomes, and suggests that it is beneficial not
only to better conservation, but also to increased semantic content hence to more
complexity. A more detailed account of semantic feedbacks will be found in the
following section.

9.2.2 Semantic Feedbacks Implement Barbieri’s Organic Codes

Engineered feedback loops designed in order to stabilize a parameter to some refer-
ence value typically use the difference between the reference and this parameter to
control its variation in the sense which reduces the measured difference. The signal
which controls the variation results from properly amplifying the difference, which
thus can be made arbitrarily small by enough increasing the amplification gain. Some
damping is often necessary for avoiding oscillations.

A semantic feedback loop has a similar stabilization effect, but it controls a set of
correspondence rules, i.e., a mapping, not a parameter. At variance with the feedback
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loops used in order to stabilize a parameter, it exhibits an on/off behaviour since it
implements, or not, the mapping which enables its own operation. Crick used the
phrase ‘frozen accident’ to qualify the onset of the genetic mapping, and so did Bar-
bieri to describe the onset of any ‘organic code’ (Barbieri 2003). We think that this
phrase can acquire an operational significance with the help of the semantic feed-
back loop concept. Looking at Fig. 9.1, we see that the feedback loops work only
if the message borne by the DNA string actually results, through the operations of
transcription and translation, in the synthesis of proteins having the precise enzy-
matic properties which are needed to perform these very operations. Furthermore,
repeating the process (hence sustaining life) also needs the enzymes involved in the
replication-regeneration process. The loop which involves the operation of transla-
tion is crucial as implying the genetic mapping as a whole. If the enzymatic functions
of the proteins are selective enough, any change in the mapping would modify the
generated proteins, thereby aborting the process as ceasing to produce the enzymes
necessary to its own implementation. A variant of it would be stable only if mutations
of the DNA string would generate different proteins with enzymatic actions able to
implement this very variant. The occurrence of a variant of the scheme of Fig. 9.1a
such that all the enzymatic properties which are needed for its implementation are
present again after the proteins it generates have been modified can be considered as
miraculously improbable, which possibly suffices to account for the uniqueness of
the genetic mapping.

The only alternative to faithfull reproduction of the semantic feedback loops is
the abortion of the whole process. If the probability of abortion is small enough, the
structure it specifies proliferates and makes up a population. Then once the loops are
closed the genetic mapping is ‘frozen’ so that, in the present framework, this word
acquires the meaning of ‘stabilized by closing feedback loops’. In (Barbieri 2003,
p. 235), Barbieri wrote: ‘Even if the evolution of an organic code could take an
extremely long time, the “origin” of a complete code is a sudden event, and this means
that the great evolutionary novelties associated with that code appeared suddenly in
the history of life.’ Closing a feedback loop is indeed a ‘sudden event’ even if the
building of its components and their assembly took an extremely long time. The
feedback schemes of Fig. 9.1 are therefore in full accordance with Barbieri’s concept
of organic codes, and everything he wrote about these codes can be interpreted as
involving semantic feedback loops.

Figure 9.1 will moreover be helpful to shed more light on the concept of ‘nested
codes’. Figure 9.1a has been drawn for prokaryotic cells, i.e., assuming that all the
DNA of a gene controls the synthesis of a protein. If we wish to make it describe
the case of a eukaryote where the genes involve exons (used for the synthesis of
proteins) and introns (spliced out prior to the beginning of the synthesis process),
what we need is just to replace Fig. 9.1a by Fig. 9.1b which involves means to
perform splicing besides the functions performed in the scheme of Fig. 9.1a. Then,
the transcription of a gene results in a ‘pre-messenger RNA’ (pmRNA) from which
introns must first be removed. This task is performed in the box labelled ‘splicing’,
which results in the actual messenger RNA (mRNA) eventually translated into a
polypeptidic chain. Besides those already synthesized, splicing needs other enzymes



9.2 Semantic Feedback Loops 199

than those needed in the operation of the prokaryotic loops. New constraints are thus
added to those already existing, and we may think of them as defining a new soft
code in the system of nested codes. Interestingly, the ‘splicing code’ is explicitly
considered next to the genetic mapping in the hierarchy of organic codes established
by Barbieri (Barbieri 2003, p. 233, Fig. 8.2). Besides the case of the ‘splicing code’,
we can identify with Barbieri’s organic codes the system of nested soft codes which
we introduced in Sect. 8.1.4 . We may thus interpret Fig. 8.3 above as resulting from
projecting along the time axis Barbieri’s Fig. 8.3, ibidem p. 235, and moreover a third
axis, that of time, is implicit in the scheme which illustrates the fortress metaphor
(Fig. 8.3) above and explicit in the text which comments it.

The existence of semantic feedback loops, moreover, solves a rather puzzling
problem left open in Sect. 8.4: how constraints associated with specific features
of a protein (e.g., assuming structures like α-helices or β-sheets) can induce con-
straints, hence ‘soft codes’ according to our interpretation, on the genome which
specifies their synthesis? The closed structure of a feedback loop entails that each
of its elements, including itself, is simultaneously located before and after any of
them. Then, although the genome instructs the synthesis of proteins, the synthesized
proteins control the genome by the agency of the feedback. The closed topology of a
loop has the rather strange property of distributing causality within all its elements.
A seeming teleology results. Many semantic feedback loops exist in the living world,
as many as biological problems resemble the dilemma of the egg and the chick. In
(Wills 1989), Christopher Wills quotes E. von Brücke: ‘Teleology is a lady without
whom no biologist can live. Yet he is ashamed to show himself with her’. Would he
feel less shame to show himself with semantic feedbacks? It may be moreover that
the yet unknown genome regeneration mechanisms involve such feedbacks.

To summarize, as a redundantly encoded sequence the genome contains the means
of its own conservation.As bearing semantics, it specifies the means for implementing
its own regeneration. The semantic feedbacks of Fig. 9.1 involve both the genome
and the phenotype it specifies, hence appear as responsible for maintaining functional
biological structures, which can be reproduced only with absolute faithfulness due
to the mapping they include: any discrepancy entails the loss of their functional
ability. The abstract concept of mapping is then embodied into functional structures,
which illustrates in this case how ‘information bridges the abstract and the concrete’
according to our statement in Sect. 6.4.

In order to illustrate the properties of semantic feedback loops, we introduce now,
in Fig. 9.2, a more detailed but still very simplified scheme of the lower part of
Fig. 9.1b.

The DNA string is represented at the top of Fig. 9.2. Its genes G1, . . . , G4 code
for proteins P1, . . . , P4. The three proteins P1, P2 and P3 exert the enzymatic ac-
tions E1, E2 and E3 by the agency of which the functions of translation, splicing
and transcription, respectively, are performed (we thus simplify these functions by
assuming that a single enzyme suffices to implement each of them). Protein P4 has
no influence on these functions. For convenience, all functions are represented as
simultaneously performed although they are dealt with successively. This does not
affect the conclusions which can be drawn.
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Fig. 9.2 Simplified lower part of Fig. 9.1b. G1, . . . , G4 denote genes which instruct the assembly
of proteins P1, . . . , P4; E1, . . . , E3 denote the enzymatic actions of proteins P1, P2 and P3 on the
functions of translation, splicing and transcription, respectively

Specific structures of a protein, like α-helices or β-sheets, are not compatible with
some sequences of amino-acids, hence the corresponding sequences of codons must
be forbidden in the genes which code for them. It is actually so because the enzymatic
actions E1, E2 and E3 of proteins P1, P2 and P3 are necessary for performing the
operations of transcription, splicing and translation which give origin to them. In
the absence of these enzymatic actions, hence if the genes G1, G2 and G3 would
not code for these proteins, the whole scheme would not work. The constraints on
the sequences of amino-acids in proteins P1, P2 and P3 thus induce constraints on
the genes G1, G2 and G3 hence endow them with soft codes. In contrast, protein P4

exerts no influence on gene G4 because they are not linked by a semantic feedback
loop. Although the genes G1, G2 and G3 control the assembly of proteins P1, P2 and
P3, and not the other way round, constraints on these proteins do induce constraints
on the corresponding genes. Causality is not violated, however, because the genes
and the proteins are inserted in semantic feedback loops. Notice that a semantic
feedback loop is necessarily oriented, which implies that at least one of its links
is irreversible. Here, both the genetic code, implemented by translation, and the
splicing are irreversible. A less simplistic scheme than that of Fig. 9.2 would lead to
the same conclusion as regards the genes and proteins, provided they are involved in
semantic feedback loops.

Figure 9.2 shows that the functions of transcription, splicing and translation are
controlled by the enzymatic action of proteins P3, P2 and P1, respectively. The
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synthesis of these proteins is controlled by genes G3, G2 and G1, respectively, but the
synthesis of any of the proteins demands that all the three functions are performed.
Let qi denote the probability of regeneration error of the gene Gi , 1 ≤ i ≤ 3. Then
the whole structure is maintained with probability (1−q1)(1−q2)(1−q3). The prob-
ability that the semantic feedback loops cease to exist is its complement to 1. If the
probabilities of regeneration errors are small enough, this probability approximately
equals their sum q1 + q2 + q3. The conservation of the whole structure thus depends
on the good conservation of the genome. If n enzymes are involved, each having
the same small probability q of regeneration error, the whole structure survives only
with a probability of approximately 1 − nq.

The above conclusions hold only because semantic feedback loops actually exist.
The problem of how they came into existence is a hard one and, as often in such
cases, only hypotheses can be made for lack of any fossil record of the objects from
which they derived and of knowledge of their environment. However, a plausible
scenario can rely on the fact that a semantic feedback loop acts as a trap, as we
already stated, in the sense that if it is once assembled, maybe by chance, it ensures
its own conservation (see Sect. 9.2.4).

9.2.3 Semantic Feedback Loops are Compatible with Evolution

Another capital feature of the system of semantic feedback loops depicted in Figs. 9.1
and 9.2 is that, although it locks its own structure, it remains compatible with evo-
lution. Indeed, these feedback loops do not control the length of the DNA string
and especially do not prevent its lengthening, which may result for instance from
horizontal DNA transfer. Let us have a look at the transition which led to the splicing
code in Barbieri’s meaning, i.e., in the transition from Fig. 9.1a to Fig. 9.1b. The onset
of the splicing function needs appending new genes, hence lengthening the genome.
Then both the lengthened genome and the phenotype it specifies are subjected to
natural selection. Let us assume that, as suggested by Forsdyke (1981), exons act as
the information message of an error-correcting code while its introns are made of
the corresponding redundancy symbols. Then, the resulting improvement in genome
permanency gives an evolutive advantage to the splicing machinery as a whole once
it is inserted in the semantic feedback loops, and the longer genome gives room to
the specification of more phenotypic features. This may explain why the transition
from prokaryotes to eukaryotes involves the simultaneous onset of several important
novelties. Interestingly, one of the phenotypic features newly acquired is the forma-
tion of the nucleus within which the genetic material is separated from the remainder
of the cell. We may think of this separation as strengthening the genome shielding
against mechanical and chemical damages. It lowers the error rate at the nucleotide
level, which in turn thanks to the hypothesized genomic code results in dividing by
a much larger amount the regeneration error rate. Several genotypic and phenotypic
features which result from closing the loops thus reinforce each other to the benefit
of the genome permanency.
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We already noticed that the efficiency of the semantic feedbacks associated with
the genetic mapping depends on two factors: the faithful conservation of the genome,
and the high specificity of the enzymes. The first one is ensured by the genomic
error-correcting code, and the second one by the semantics borne by the genome. Its
improvement thus depends on increased redundancy on the one hand, on increased
information quantity on the other hand, since more information quantity actually
implies more semantic specificity. Both imply a lengthening of the genome and
suggest that the co-evolution of the genomic error-correcting code and of the enzyme
specificity resulted in the high conservation of the molecular machinery as well as
that of the genomic message.

Do semantic feedbacks answer Wittgenstein’s question quoted at the beginning
of Sect. 8.1: ‘why would the fact that the world once began to be be a greater miracle
than the fact that it continued to be?’, at least as regards the persistence of the living
world? A set of semantic feedbacks like those of Fig. 9.1 behaves as a trap. Once
the loops are closed, they remain so. It is extremely unlikely that the conditions for
their closing are fulfilled. However, if by chance they are once fulfilled, the structure
maintains itself and, thanks to its reproduction ability, strives at the expense of its
environment and tends to consume the available resources. But it has the remarkable
feature that its closeness does not hamper the genome lengthening, so it can evolve
while remaining closed. However, this is true provided the molecular mechanisms
which implement the necessary functions of transcription, translation, regeneration
and replication already exist. How these structures once began ‘from the scratch’
remains quite mysterious, so we may think that we plausibly answered only the
second part of Wittgenstein’s question.

9.2.4 Conjecture About the Origin of Semantic Feedback Loops

As regards the very origin of these structures, one may imagine an initial situation
where many molecules of different types are mixed, some of them mainly acting
as memories of symbolic sequences like modern DNA or RNA, others endowed
with enzymatic properties like modern proteins, some possibly having properties of
both kinds. Their random interaction will generally have no stable result, unless a
semantic feedback loop is assembled by chance. Maybe this suffices to initiate the
process which leads to life. The probability that a rudimentary semantic feedback
loop is assembled may be extremely small but, if this probability is not exactly zero,
hence if this event is not absolutely impossible, it may occur sooner or later. If
favourable conditions are met the mixture of molecules of the required types may
occur very often, and the experiment is repeated in many places during geological
time intervals (while the interactions of molecules most often result in short-lived
products). Then, once assembled, a feedback loop keeps its structure. If a set of
semantic rules is by chance fitted to its operation, the semantic feedback survives. The
closing of feedback loops having occurred once results in stabilizing their structure
for a time much longer than the average lifetime of the products of the interaction of
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molecules. Not only these structures survive but they reproduce themselves. Other
sets of semantic rules result in fleeting structures which vanish and leave room for
other ones. Even if the probability of the set of rules which stabilizes the loop
is very low, it has with respect to other assemblies the advantage of lasting and
of perpetuating itself by cloning. Its proliferation will eventually capture all the
resources locally available. Moreover, this scheme possesses the remarkable property
of being able of evolution while remaining locked, thanks to the compatibility of its
structure with the genome lengthening. Then, ‘horizontal transfer’brings at the same
time more information and more redundancy. This scheme enables trying variants
of the initial set of feedback loops from which the Darwinian selection will choose
better and better fitted ones, thus initiating the whole process of biological evolution.
Extremely small probabilities are involved in the process assumed to lead to life,
so the above scenario remains highly questionable. Maybe Yockey is right when he
doubts that it will ever be possible to know the origin of life (Yockey 2005).

9.3 Information as a Fundamental Entity

9.3.1 Information is an Abstract Entity

The great physicist Erwin Schrödinger, one of the founders of quantum physics,
published in 1941 a short essay entitled What is life? (Schrödinger 1943). Introduc-
ing the concept of ‘aperiodic crystal’, he anticipated the structure and properties of
DNA, which at that time was not identified as the physical medium of heredity. We
devoted a paper to a proposed answer to Schrödinger’s question based on concepts of
information theory (Battail 2011) and much of the content of this paper has been in-
corporated in this book. Schrödinger hypothesized that yet unknown laws of physics
should be necessary to explain life. Barbieri (2008) and myself (Battail 2011) argued
that the discovery of such laws is rather unlikely, but that physics failed to recognize
fundamental entities which are at the root of life. For Barbieri, these entities are
‘nominable entities’ as defined in Sect. 2.4 above, and I deem that it is information,
as an abstract concept which includes any nominable entity, which should be recog-
nized as the missing fundamental entity. The great difference of this statement with
respect to Schrödinger’s hypothesis lies in the abstractness of information, which we
definitely deny to be a physical entity.

We have shown in Sect. 6.3.4 that defining the information quantity as the nega-
tive of the physical entropy results in measuring by nH the quantity of information
borne by n clones bearing each an information quantity of H . Since mere copying
does not produce any novelty, this conclusion is not acceptable, which led us to
reject the derivation of information quantity as the negative of the physical entropy
which was suggested by Schrödinger and Brillouin. Instead, we proposed that in-
formation, which exhibits the properties pointed out in Sect. 2.2, should be taken
as the fundamental entity from which the physical entropy can be derived, under-
stood as measuring the lack of information associated with changing the scale from
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microscopic to macroscopic (see Sect. 6.3). Then the ability to proliferate, which is
specific to information and is not shared by physical entropy, is also not merely a
property of life, but the one which the most obviously distinguishes the living from
the inanimate. Notice that the ability to proliferate is a property of abstract informa-
tion which is overlooked when the information and its support are confused, as did
Landauer. Using his definition of information would thus fail to account for the most
specific property of life.

Physicists like Schrödinger, Bohr and Brillouin were keenly interested in life.
Rather strangely, many contemporary physicists do not share this interest and claim
that their science is the whole science, which leaves no place for a science of life.
They do not even attempt to rationally legitimate this exclusion. Although living
beings are subjected to the laws of physics as other material objects, what makes
them specifically living entirely escapes physics. Excluding biology from science
is a rather unfair means to get rid of problems about which physics has nothing to
say! We think that the reason why physics ignores life is its lack of realizing that
information is an abstract fundamental scientific entity. Physics dealt with matter
as a fundamental entity since its very beginning. It took centuries to elaborate the
concept of energy but it is now recognized as a fundamental entity; the theory of
special relativity furthermore states its equivalence with matter according to the
famous Einstein equality E = mc2. Information, a recent concept at the slow pace
of the evolution of ideas, must be similarly recognized as fundamental for building
a science of life with standards of rigour similar to those of physics, but how long
will it take? The intrinsic abstractness of information strongly differentiates it from
the usual physical entities, and this will not help recognizing it as a fundamental
entity. We suggested above that information is specific to the living world and can
even delineate the border between the living and the inanimate. That physics denies
life can be considered as the negative facet of this statement: it is because physics
has not an adequate information3 concept in its toolbox that physicists have nothing
to say about life.

The abstract character of information is underlined in (Avery 2012, p. 90) with
arguments close to those presented here. The present book interprets indeed the
relationship of information to life and evolution in a way similar to that of Avery,
which makes our views fully compatible with his. However, the scope of the present
book is more narrowly focused on information. It has been inspired by the engineering
practice and more emphasis has been laid on the status of information and the means
of its conservation.

9.3.2 On the Epistemological Status of Information

The compartmentalization of science into more and more specialized disciplines
unfortunately results in the upholders of one of them having at best a scant and

3 Similarly to biology, the word ‘information’ is far from unusual in physical texts. What lacks is
an adequate scientific concept of information.
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out-of-date vision of the many others, when they do not simply ignore them. Even
when they are aware of their existence, they seem to be unable to imagine that
the other disciplines progressed just like theirs. Moreover, although they are aware
of the borders which separate their own discipline into subdisciplines, they have
a monolithic vision of the other disciplines, as if they miraculously escaped the
mechanisms which entail scissions in their own field. As a result, researchers in a
discipline are extremely reluctant to accept solutions to their own problems when they
come from outside. Symmetrically, if their results can provide solutions to problems
met in another discipline, they will most often not be aware of this possibility for
lack of knowing the very existence of these problems.

Of course, specialization appears as a necessity for teaching. However, the trend
towards increasing specialization tends to make disciplines closed on themselves
and eventually unable of any exchange with others. Even the unity of science is
threatened since nothing warrants that the separate disciplines do not reach mutually
incompatible conclusions. We thus believe (and try to illustrate it in this book) that
transdisciplinary research has become a vital necessity for the future of science.
Probably the best thing to do is to gather in a single institution many specialists of
sciences ranging from pure mathematics to biology, engineering, social sciences and
philosophy and let them talk together, each of them patiently trying to explain his/her
own research activity to the others. Formal constraints would be counter-productive
and should be avoided. For sure, valid results would be obtained although they would
be largely unpredictable. Some high ranking institutions already operate this way.

The importance of conservation laws in physics is obvious. Many physical laws
express that different equivalent forms of some fundamental entity (mass, energy, . . .)
are exchanged so as to keep constant an overall quantity. In sharp contrast, informa-
tion is not a physical entity although it has no existence unless it is inscribed on some
physical support. It does not obey any conservation law. It can be annihilated, espe-
cially if its material support is destroyed. However, being ‘immaterial’ for Bergson
(see the quotation in Sect. 10.2), or ‘abstract’ as we qualify it, it can also be shared.
As coextensive with life, symbolic information resides in that part of the physical
world referred to as living. Being present in the physical world, it can interact with
physical objects. We may thus think of life as resulting from the interplay of physical
entities which can only be exchanged and abstract symbolic information which can
be shared.

From living to physical, the symbolic information borne by the genome acts as
instructing the assembly of the material structures of a living thing. Its prolifera-
tion results from repeating this action. Information has thus a constructive role and
accounts for the life organization.

From physical to living, the entropy increase manifests itself by cumulative
symbol errors in the genomic message which progressively reduce its informational
capacity. The entropy law has thus here its usual ‘deconstructive’ role. As most
often succeeding in maintaining the integrity of the genetic message, however, the
genome is necessarily endowed with error-correction ability. It succeeds insofar as
it is frequently enough regenerated. Then it turns out that regeneration errors have
the constructive result of providing very infrequent variants which feed the natural
selection process and play thus a capital role in evolution (see Sect. 8.2.4).
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9.4 Nature as an Engineer

Reviewing in (Benner 2008) a book by Regis (2008), Steven Benner wrote:

Because building something requires a deep understanding of its parts [and of their mutual
relationship], synthesis also stops scientists from fooling themselves. Data are rarely col-
lected neutrally during analyses by researchers, who may discard some, believing the data to
be wrong if they do not meet their expectations. Synthesis helps manage this problem. Fail-
ures in understanding mean that the synthesis fails, forcing discovery and paradigm change
in ways that analysis does not. (The phrase in brackets has been added by me.)

Synthesis being the engineers’ job, this remark is an excellent plea for a close collab-
oration of biologists and engineers. It is originally intended to genetic engineering
but actually applies to any instance where nature and engineers are faced with the
same problems. It puts in the forefront the necessary implementation of biological
functions. Indeed, assuming the existence of some biological function without caring
about how it is implemented pertains to wishful thinking. The engineering approach
advocated in the above quotation should avoid it. Besides a renewed understanding
of biological facts, another benefit of an engineering approach regards methodology:
it often makes possible quantitative assessments, especially by using easily tractable
yet realistic models for computation and simulation. It makes the engineers’ toolbox
available for studying life. Then, hypotheses made for explaining biological facts
can be tested, validated or invalidated.

Mainstream biology manifests little interest in engineering, however. In the course
of evolution, Nature had to solve many engineering problems. Although she uses
very different means, her achievements often outperform those of human engineers
and may be deemed outstanding. Both biologists and engineers should be deeply
interested in Nature’s achievements, so there is no objective reason why engineers
and biologists ignore each others. Their present divide appears as a mere legacy of
the past.

Technology is probably the sole human activity where the concept of progress
is unquestionably meaningful. The improvement of machines as time passes is an
objective fact since the figures which measure their performance steadily increase.
Moreover, newly invented machines perform tasks that earlier machines were unable
to do. In the middle of the XIX-th century, the products of engineering had already
revolutionized the human society. However, they did not compare with living things
as regards their perfection and flexibility. The self-reproduction and self-repairing
ability of living things had no engineering equivalent. They make an efficient and
parcimonious use of energy, while maintaining the range of their internal parame-
ters (especially pressure and temperature) close to that of their environment, unlike
machines like the steam engine or other motors. Moreover, extremely complex but
tiny functional living structures were observed, much smaller than any manufac-
tured object, up to the molecular scale. These features of life outperformed so far the
achievements of human engineers that the technology of the time could not provide
models or analogies to help biologists. The gap between technological and natural
products could then be thought of as unbridgeable. Nowadays, this gap still exists but



9.4 Nature as an Engineer 207

technology made immense progresses which significantly reduced it, and researchers
seek means, both material and conceptual, for further reducing it. For instance, nan-
otechnologies enable building devices of extremely small size, at the same scale as
many basic biological structures. Moreover, life can no longer be thought of as elud-
ing the laws of physics, hence as radically foreign to the physical world. Concepts
like ‘artificial life’, although very ambitious, are no longer deemed impossible and
have become research topics.

That machines steadily improve does not mean that an overall progress results,
however, because the criteria which assess their performance are specialized and
possibly conflicting: simultaneously improving guns and armors does not result in
any overall advantage except for those who sell them. A global comparison shows
that, as regards their flexibility and self-repairing ability, the products of Nature
still widely outperform those of human engineering. Besides working softly and
quietly, they have the decisive advantage of making up together a lasting world.
Nature proceeds according to cycles which produce no wastes, and its processes are
fuelled by no other energy than the inexhaustible solar radiation. In contrast, we now
bitterly realize that the Earth obviously contains a finite quantity of raw materials,
especially of fossil fuels. Consuming fossil energy and littering the planet with our
wastes hinders sustaining the technological development which, in its present form,
is doomed to last at most a few centuries, a negligibly small duration at the geological
timescale. Life’s engineering is fully sustainable while the way humans presently
use technology is properly suicidal and even threatens life itself.

Nature’s method is extremely different from that of human engineers. Rather than
engineering, François Jacob refers to Nature’s approach as ‘tinkering’ (Jacob 1981).
It consists of letting proliferate a number of individuals some of which incur random
genomic variations which entail somatic changes. Then, Darwinian selection chooses
those of the variants which will similarly proliferate and incur random mutations and
selection, according to a branching and pruning process. From the point of view of
human engineers, this is a very slow and costly process with moreover very uncertain
results, all the more it is not intended to any specific purpose. Nature, however, suffers
no constraints of cost and time: living material appears as very cheap, and the process
of evolution lasts for billions of years. Yet the products of evolution are beautifully
engineered and often outperform human achievements. Nature’s method has indeed,
besides its obvious drawbacks of cost and slowness (according to human criteria), an
advantage that no human engineer may claim: exhaustivity. This method randomly
explores the field of what is possible4. Its blindness warrants its objectivity. This
process can eventually find the best solution, maybe after many turns and twists. In
contrast, human engineers are unavoidably subjected to prejudices which limit their
horizon. Besides being exhaustive, Nature’s method is a permanently continued
process, hence as flexible as to fit environmental changes. The solutions found by
Nature are always challenged by new ones. The ‘best’ solution referred to above is
thus merely a local and provisional optimum.

4 Shannon’s random coding alluded to in Sect. 5.4.2 may to some extent have been inspired by
Darwin.
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Nature’s method based on random search approaches the limits of what is possible
with the means available to her. Human engineers may try to implement by their
own means solutions already found by Nature, in order to solve their own problems.
Such biomimetic designs often meet success in various fields and are very promising
(Benyus 1997; Bar-Cohen 2005, 2011). But biologists too should be conscious that
Nature found solutions to engineeering problems. It is likely that certain of these
achievements have not yet been accomplished by human engineers. For lack of
interest of biologists in engineering, and because of the increasing specialization
of disciplines which hampers their mutual understanding, it may even occur that
solutions found by Nature and already invented by engineers remained unknown
to biologists. It is what occurred indeed as regards error-correcting codes, which
provide a solution to the genome conservation, a problem of capital importance
although it was not perceived by biologists. In any case, technology should be a
source of inspiration to biology. Knowing the solutions that humans have invented is
often (maybe always) the only means for understanding the solutions to engineering
problems found by Nature aeons ago.

Communication engineering benefits from the theoretical framework of informa-
tion theory. Literal communication of symbolic sequences (‘literal’ meaning that
semantics is ignored) is actually a mathematical problem, and information theory is
just that branch of mathematics which deals with it. Information theory can bring
to biology its concepts and methods as well as its results. One of its most important
concepts is that of channel capacity, proven to set an impassable limit to reliable
communication. Information theory actually proves that ‘errorless’ communication
(more precisely, with an arbitrarily small error rate) is possible over a channel despite
the symbol errors which affect the transmitted message, provided the information
rate is less than the channel capacity, a quantity which decreases as the channel error
rate increases. However, the very means which enable errorless communication pre-
vent communicating beyond the channel capacity. Both the possibility of errorless
communication below the capacity and its impossibility above it, although rather
counterintuitive, are fully confirmed by the engineers’ experience, besides being
theoretically proven.

The hypothesized ‘invention’ of genomic error-correcting codes by Nature is es-
pecially important since the conservation of genomes is at the heart of the evolutive
process. The improvement of decoding error probability due to lengthening the code-
words, a proven although paradoxical result of information theory, appears as the
only means for explaining the trend of biological evolution towards increasing com-
plexity (as I argued in (Battail 1997) and following papers). A low decoding error
probability is necessary for ensuring the survival of a genome since its permanency
is inversely proportional to this probability as shown above. The performance of
genomic error-correcting codes has thus been at stake of evolution since its very
beginning.

Genetics is the domain of biology in which information theory can the most obvi-
ously be fruitfully applied but it can be in many others, especially neurosciences and
immunity. Biosemiotics contributed in realizing how omnipresent is communication
in the living world and, everywhere it is, information theory should first have its say.
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Chapter 10
Life Within the Physical World

Abstract Chapter 10 considers the inclusion of the living world within the physical
world. The border between the living and the inanimate is poorly understood despite
its obvious importance. We suggest that the living world is the only place within
the physical world where information is generated, copied, and used, which enables
clearly identifying the divide. This statement needs to be valid that the artefacts of
the human industry intended to process information are considered as belonging to
the living world (including these tools in an ‘extended phenotype’). We may then
interpret any living being as a kind of Maxwell’s demon which counteracts the in-
crease of physical entropy. At variance with the genuine demon, however, it does
not violate the second law of thermodynamics since its operation needs energy, as
provided by metabolism which ultimately originates in solar radiations. Analyzing
how the ribosome sorts amino-acid molecules shows that the assembly of a polypep-
tidic chain actually decreases the cell entropy, but repeating this operation decreases
the physical entropy by the same amount while not creating any more information,
confirming that information is abstract and not physical. A sketch of a physical mea-
surement as necessarily crossing the border between the living world of the observer
and an inanimate object is interpreted as a variant of Shannon’s paradigm. Then, the
information-theoretic capacity of the channel limits the information quantity which
can be acquired by the observer.

10.1 A Poorly Understood Divide

We have already stated in Sect. 9.1 that information delineates the border between
the living and the inanimate. This divide is one of the most important aspects of
reality. However, both biology and physics leave it essentially unexplained. Léon
Brillouin wrote about it (Brillouin 1959, p. 98):

Living ourselves, we are so much used to this strange world that we fail to marvel at it. And
though: reproduction, birth, growth, heredity, thought, all are enigmas for a physicist or a
chemist. Nothing similar can be observed in the inanimate world. What we can understand is
only death and the living system decomposition. (Vivants nous-mêmes, nous avons tellement
pris l’habitude de ce monde étrange que nous oublions de nous en émerveiller. Et pourtant:
reproduction, naissance, croissance, hérédité, pensée, autant d’énigmes pour un physicien
ou un chimiste. Rien de semblable ne s’observe dans le monde inanimé. La seule chose que
nous puissions comprendre est la mort et la décomposition du système vivant.)

G. Battail, Information and Life, DOI 10.1007/978-94-007-7040-9_10, 211
© Springer Science+Business Media Dordrecht 2014
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According to my interpretation of information at the heart of the living world,
the properties of life at which Brillouin rightfully marvels can only be understood if,
acting on matter, information transfers to it some of its specifically abstract properties,
especially the possibilily of its sharing which then explains why life can proliferate.
Information must be recognized not only as a fundamental scientific entity, but as
basically abstract.

As regards how life interacts with the physical world, Howard Pattee expressed
an opinion close to mine (Pattee 1972). He wrote: ‘life is matter controlled by
symbols’. I would prefer ‘life is matter controlled by information’ since symbols
are unimportant by themselves, being only elements of a sequence, which itself
represents an information, a much more general entity provided it is abstractly defined
as an equivalence class, as I did above.

In (Pattee 2005, pp. 524–540 in Favareau 2010), Pattee asked the following
question, pp. 524–525:

All signs, symbols, and codes, all languages including formal mathematics are embodied
as material physical structures and therefore must obey all the inexorable laws of physics.
At the same time, the symbol vehicles like the bases in DNA, voltages representing bits
in a computer, the text on this page, and the neurons firings in the brain do not appear to
be limited by, or clearly related to, the very laws they must obey. Even the mathematical
symbols that express these inexorable laws seem to be entirely free of these same laws.

and he further wrote, ibidem p. 537:

One of the oldest, non-religious arguments against Darwinian evolution is the apparent
improbability of chance mutations producing any successful protein, let alone a species.
[. . .] This argument is based on the assumption of the sparseness of functional sequences
and the immensity of the research space.

Answers to these questions are suggested in the present book: genomic or linguistic
error-correcting codes are efficient means to fight ‘the inexorable laws of physics’,
and ‘functional sequences’ necessarily involve specific constraints which result in
‘soft codes’. Moreover, the sparseness of functional sequences explains the efficiency
of genomic soft codes, but the symbols of a sequence are actually not independent:
since they are tied by mutual constraints, the probability of a sequence is not the
product of the individual probabilities of its symbols, but much larger than this
product. Furthermore, the probability of finding one of them by random search
is not that of a single sequence but of any sequence which belongs to its nearest
neighbourhood, since the genome regeneration means operating on it would exactly
recover the proper functional sequence: the optimum regeneration operating on any
sequence in the nearest neighbourhood of a codeword (its Voronoi region) would
result in this codeword.

Physicists deal with information as physical and, doing so, cannot perceive that
the specificity of life actually results from that of information. Landauer claimed
in 1996 that ‘information is physical’ (Landauer 1996). We saw in Sect. 6.3.4 that,
much earlier, Schrödinger and Brillouin tried to define information as a physical
entity. According to Boltzmann, Planck and Szilard, the physical entropy is inter-
preted as measuring an inaccessible information, i.e., an uncertainty which cannot
be resolved. Shannon’s entropy, on the contrary, measures an uncertainty which is
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eventually resolved, prior to its resolution. Schrödinger and Brillouin concluded that
the informational entropy is actually the negative of a physical entropy, and they re-
named it ‘negentropy’. Physicists claim without further elaboration that information
has become a physical quantity.

For instance, Gilles Cohen-Tannoudji considers that Boltzmann’s constant defines
a quantum of information (we already gave our own interpretation of this idea in
Sect. 6.3.2 above). He wrote (Cohen-Tannoudji 1998, p. 128):

. . . all the progresses of the XX-th century physics lead to consider information as a physical
quantity at least as fundamental and irreducible as mass, duration or length. This quantity
can be dealt with as a pure number only because Boltzmann’s constant, which expresses the
limit of its divisibility, is a universal constant which can be set to 1. (. . . tous les progrès
de la physique du XX-ème siècle conduisent à considérer l’information comme une quantité
physique au moins aussi fondamentable et irréductible que la masse, la durée ou la longueur,
une quantité que l’on ne peut traiter comme un nombre pur que parce que la constante de
Boltzmann, qui traduit la limite de sa divisibilité, est une constante universelle que l’on peut
poser à 1.)

He further wrote, ibidem, page 133:

. . . the discovery of information as a fundamental irreducible physical quantity [. . . makes]
referring to a knowing subject unavoidable. (. . . la découverte de l’information comme quan-
tité physique fondamentale irréductible [. . . rend] inévitable la référence à un sujet de la
connaissance.)

We agree as regards the importance of information as a fundamental entity and the
necessity of referring to a knowing subject, of course, but we deny that information
can be likened to a physical quantity. On the contrary, we think of it as basically
abstract: an information is a nominable entity, not a quantity. What can be quantita-
tively measured is merely one of its attributes, just like a man has a weight (among
other attributes) but is not reducible to it. Indeed, the dwelling of information within
the physical world makes it a bridge between the abstract and the concrete, as already
discussed in Sect. 6.4.

Likening information to the negative of a physical entropy entails that copying n

times an information of entropy H diminishes by nH the physical entropy, as shown
when analyzing the operation of the ribosome in Sect. 9.1. Concluding from this fact
that the information quantity has been multiplied by n, however, is not acceptable
since copying does not provide any novelty, hence not any more information. What
has been multiplied is only the number of supports of a same information. The
possibility of being copied has been stated in the axiomatics of information outlined
in Sect. 2.2 and can be referred to as its sharing property. It is not compatible with
the status of a physical quantity but it enables the proliferation of an information. The
proliferation property also mainly differentiates the living world from the inanimate
one, in accordance with the prominent role we attribute to information in life. Because
information controls life, proliferation of life is a mere consequence of the sharing
property of information.
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10.2 Maxwell’s Demon in Physics and in Life

This section complements the analysis of the relation of physical entropy and infor-
mation which began in Chap. 6, Sect. 6.3. It is devoted to Maxwell’s demon, whose
talent is far more modest than Laplace’s. It will be very useful for contrasting our
approach with that of physics.

Maxwell’s demon is assumed to violate the second law of thermodynamics. Many
variants of it can be imagined, but most of the examples of this demon given as yet
follow Maxwell himself, considering the entropy of a gas made of identical molecules
within some enclosure. This model is obviously inspired by the steam engine. An
enclosure which contains a gas initially at thermal equilibrium is divided into two
compartments by a partition with a small hole (see Fig. 6.1). Maxwell’s demon is
endowed with a shutter it can use for opening or closing this hole. The demon can
sense the direction and speed of the molecules, so as to let only the fastest ones enter
one of the compartments and the slowest ones leave it. Doing so, the demon tends to
create a temperature difference between the two compartments, thereby decreasing
the entropy of the system with respect to its initial state and violating the second law
of thermodynamics. A plentiful literature has been devoted to this fictitious object
(Leff and Rex 2003). Many physicists tried to save the second law by showing that
Maxwell’s demon could not be implemented, and most physicists deem indeed that
it cannot exist. We may think that Brillouin successfully exorcised the demon: in an
enclosure at a constant temperature the demon cannot see the molecules, so it can
work only if it has a lamp1, hence a heat source at a temperature other than that of the
enclosure (Brillouin 1951). From a more general point of view, we may think that
the size of the demon, which is necessarily microscopic, is not compatible with the
complex tasks of measurement and control it is assumed to perform, all the more it
cannot escape thermal motion. Let us accept the conclusion that Maxwell’s demon
does not exist in physics.

However, looking at life phenomena leads to a very different conclusion. Living
beings obviously develop and maintain differentiated structures against the physical
entropy increase although they inhabit Boltzmann’s world. Death is maybe the most
striking experiment in this respect: once the process of life is interrupted, but only
then, the relentless entropy law takes over. Any living being thus resists the second
law, hence Maxwell’s demon dwells in it! More precisely, although physicists imag-
ined Maxwell’s demon as foreign to the physical system on which it operates, a living
thing is both this system and the demon, as noticed by Norbert Wiener (Wiener 1961,
p. 58).

Thus, what is wrong? Life seems to violate the second law of thermodynamics but
a necessary and very important condition for its validity is not fulfilled. The increase
of entropy stated by the second law concerns an isolated system, hence which does
not receive energy from outside. The operation of living beings implies metabolism,

1 It is assumed that view is the only means the demon uses for sensing the molecules, which is
rather anthropocentric.
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hence needs energy. If the source of its energy is appended to the living being, an
isolated system results and it obeys the second law. This law does not forbid that the
entropy of some parts of a system decreases, provided it is more than compensated
by an increase of the entropy in other parts. For instance, a refrigerator maintains
its internal temperature lower than the outer one without violating the second law of
thermodynamics, provided this law is applied to a system which includes its energy
source. Life similarly does not contradict the second law, although the own entropy
of a living thing does not actually increase (Avery 2012). We may think of it as going
against the trend asserted by the second law, just like a fish can expend energy to
swim against the stream of a river. Far from tending to uniformity as if it obeyed the
second law, life results in creating and maintaining increasingly important differences
between parts of a system. Moreover, this is true not only for the development of an
individual but still more so for its entire species, and even more for all species, i.e., for
life in its entirety. We witness both the increase of uniformity in the inanimate world
as predicted by the second law, and the increase in diversity, its exact contrary, when
we observe life. Moreover, although individual beings resist the entropy law during
comparatively short time intervals (e.g., a few years or decades for large animals),
their species does so until it becomes extinct and life lasts since at least 3.5 billion
years. The Earth constantly receives a flow of energy radiated from the sun, which
suffices to maintain life and to sustain the paradoxical decrease of its entropy.

Let us now look at how a living object resists the entropy increase. We may
rightfully deem that the steam engine is not a good model of it. But physical entropy
does not only measure how disorderly is a gas made of identical molecules within
some enclosure. It also measures, for instance, how uniformly chemically different
molecules are mixed. A decrease of the entropy of mixtures results from sorting
the molecules in terms of their chemical species. This can be done by means of
catalysts which can bind to specific molecules. It is indeed catalysts which enable the
ribosomal machinery, under the control of messenger RNA, to sort amino-acids from
an initial mixture and to assemble them into polypeptidic chains. Not only the most
trivial observation of life at the macroscopic scale hints at living things violating the
entropy law, but how the ribosomal machinery, a fundamental molecular mechanism
of life, actually uses information at the molecular scale so as to diminish the physical
entropy is well-known. The ribosomal machinery sorts the molecules in a mixture of
amino-acids as Maxwell’s demon does with respect to gas molecules in an enclosure.
As regards the result, the difference only lies in the sorting criterion. As regards the
implementation means, they are experimentally identified in the former case while
no physical means can do so in the latter. Metabolism provides the needed energy.
Maxwell’s demon does not need any, but does not exist.

Chapter 4 of the book Information theory and evolution by John Scales Avery
sheds light on this process (Avery 2012). The main physical quantity to be considered
is Gibbs’ free energy of a system, defined as

G
�= U + PV − TS
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where U denotes the ‘internal energy’ of the system, P the pressure, V the volume,
T the absolute temperature and S the entropy. This quantity is usually interpreted
as measuring the energy available for producing mechanical work. However, Avery
interprets it more generally as ‘a measure of a system’s content of thermodynamic
information’ (Avery 2012, p. 92). Then mechanical work is only one of the possible
products of the system and we may think of the free energy as measuring the energy
available for any ‘orderly’ (as opposed to thermal) use.

Gibbs, who was mainly interested in chemistry, has shown that the free energy
must decrease in any spontaneous reaction taking place at constant temperature and
pressure. He introduced the free energy of formation of molecules, i.e., the decrease in
free energy which occurs in their formation. For given conditions of temperature and
pressure, this free energy of formation can be measured and is precisely known. Avery
gives two examples of such free energies of formation: that of water by combining
hydrogen and oxygen, and that of burning glucose. The latter is especially interesting
to us.

The reaction of glucose oxidation reads

C6H12O6 + 6O2 → 6H2O + 6CO2.

As a combustion, it produces heat. Although ‘spontaneous’ in the sense that the
corresponding free energy of formation is negative, this reaction occurs only when
it is triggered by some external factor because potential barriers which block it must
be overcome, so ‘a lump of glucose can sit for years on a laboratory table’ without
being oxidized. Now, says Avery, assume that the glucose is eaten by a girl working
in the laboratory. The digestive enzymes quickly catalyze the oxidation and a large
part of the free energy is used for the synthesis of ATP (adenosine triphosphate, the
main source of metabolic energy) in the girl’s mitochondria. Then,

the high energy phosphate bonds of the ATP molecules will carry the available thermody-
namic information further. In the end, a large part of the free energy made available by the
glucose oxidation will be used to drive molecular machinery and to build up the statistically
unlikely (information-containing) structures of the girl’s body.

Interestingly, the inverse reaction, namely the synthesis of glucose

6H2O + 6CO2 → C6H12O6 + 6O2,

which is no longer spontaneous but needs absorbing energy, is precisely what pho-
tosynthesis performs, where the needed energy is supplied by the solar radiations.
This is the very source of all life at the Earth’s surface, as being at the origin of any
available food.

Since information-receiving objects exclusively belong to the living world,
and since only an information-receiving agent can violate the second law of
thermodynamics, one may assert that

living things, and only living things, can decrease the physical entropy.
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In other words, the living world is populated with Maxwell’s demons: any living
thing is both the demon and the system on which it operates2. Contrary to the genuine
demon, however, a living being needs energy so as to counteract the entropy increase.
It successfully performs the most difficult task that the demon does, i.e., sorting the
molecules, but not for free: metabolism is another necessity of life.

We now illustrate how the very operation of life results in decreasing the physical
entropy. As mere examples, we consider three instances: the synthesis of a protein,
the self-reproduction of living beings, and the evolution of a population.

As a first and paradigmatic example, a clear illustration of the above statement
is provided by the gene-instructed synthesis of a polypeptidic chain (eventually be-
coming a protein) which occurs in the cell. We assume that the 20 amino-acids which
make up proteins are present, each in sufficient quantity. The number of distinct a
priori possible polypeptidic chains of length np is 20np , a very large number since
a realistic order of magnitude of np is a few hundreds. The physical entropy asso-
ciated with a mixture of np amino-acids is at most Sp = log2(20np ) = nplog2(20)
(approximately np × 4.322) binary units. Now consider the translation process oc-
curring within a cell. A molecule of messenger RNA (mRNA) uniquely determines
a sequence of amino-acids which is assembled by the joint action of a transfer RNA
(tRNA) molecule corresponding to each codon of the mRNA according to the genetic
‘code’ (see Fig. C.3 in Appendix C), which binds itself to the amino-acid specified by
this codon, and of the ribosomal machinery which binds together the amino-acids in
the order of the mRNA codons which specify them. Then a unique polypeptidic chain
is synthesized which replaces an initial mixture of np amino-acids, thus cancelling
an amount of at most Sp = np log2(20) binary units in the physical entropy of the
system. The length np of each synthesized polypeptidic chain is actually determined
by the position of a ‘stop’ codon in the mRNA molecule. Every time a polypeptidic
chain of length np is synthetised, the entropy of the initial mixture of amino-acids
decreases by at most Sp = np log2(20). The cellular machinery results in decreas-
ing the physical entropy because it controls individual amino-acid molecules. This
may be thought of as a kind of Maxwell’s demon. At variance with the system of
Fig. 6.1 which contains identical molecules, however, the physical entropy results
here from the mixing of different molecules and the ribosome decreases the entropy
by assembling a definite polypeptidic chain made of np of these molecules.

The information quantity brought by the choice of one among M objects, for
instance with the same probability 1/M , is H = log2(M). Letting M = 20np

provides the informational entropy associated with the choice of a polypeptidic chain
of length np, namely, H = np log2(20) = Sp, i.e., the translation of a gene by the
cellular machinery provides a quantity of information which equals the physical
entropy of the initial mixture of np amino-acids. Then the quantity of information
has increased by the same amount as the physical entropy has decreased, which
substantiates the equivalence of informational entropy with physical negentropy in
this particular case (Brillouin 1956).

2 Of course, artificial devices may behave so, e.g., a device can mimic the ribosome operation.
Remember that we include human-made artefacts within the living world.
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The example just given illustrates the relation of physical and informational en-
tropies. It is simple enough to be quantitatively dealt with. The following examples
are much more complicated, but they can be understood as instances of the paradigm
provided by the first example. As a second example, the self-reproduction of living
beings diminishes the physical entropy for just the same reason as the synthesis of
a protein does. When a living thing bearing an amount of structural information of
Hind is duplicated, the physical entropy decreases again by the same amount (the
subscript ‘ind’ in Hind stands for ‘individual’). As a result, the setting up of a popu-
lation of N identical individuals from successive replications of an ancestor bearing
an amount Hind of structural information results in a decrease in the physical entropy
of NHind. Notice that, although there is no more information in a set of N identical
objects than in each of them, the decrease in physical entropy equals the product of
the information quantity that each object bears by the number of these objects. This
is the main reason why we deny that information can be likened to a physical entity.

A third example is again a population of N individuals descending from a sin-
gle ancestor, as already considered in Sect. 6.2. Each individual bears a quantity
of structural information equal to Hind, but we now assume that replication errors
occurred. A set of N identical objects bears no more information than each of its
elements, but the replication errors now result in more and more differing objects as
their number N increases, either with small differences frequently occurring (in the
absence of a genomic error-correcting code), or with much more infrequent but larger
differences in the presence of such a code (Battail 2008a, b). Hence the existence
of mutations in the population results in increasing the quantity of information con-
tained in the population as a set of individuals when the size of this population itself
increases. This increase of information quantity results from noise-generated errors,
hence is again taken out from the physical entropy. The ability of individuals to
convert symbolic into structural information results in an increase of the information
quantity associated with the population diversity. Notice that the filtering operated
by natural selection diminishes this quantity of information, in contradiction with
Ronald Fisher’s statement that ‘Natural selection is a mechanism for generating an
exceedingly high degree of improbability’ (Fisher 1930).

The living world is organized as nested sets of objects. The molecular constituents
of living tissues are mostly polymers made of small molecules, such polymers make
up organelles, a cell is an assembly of organelles, an organ is a collection of cells, an
individual is an assembly of organs, a population is a collection of individuals, etc, to
name only a few. Besides the information borne by its individual constituents, each
of these sets possesses its own information, borne by the differences between these
constituents. Information thus exhibits the property of emergence. At any level, the
information has been acquired at the expense of the physical entropy.

That life goes against the entropy increase has been noticed more than a century
ago by the philosopher Henri Bergson, who wrote in (Bergson 1907), as quoted by
Brillouin (Brillouin 1959, p. 132):

This reality [the second law] strides towards a direction which suggests to us the idea of
something which becomes undone; here is likely one of the essential features of materiality.
What can be concluded from that, except that the process by which this thing becomes done
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is directed towards the opposite of the physical processes and that it is then, by its very
definition, immaterial? [. . . Life] cannot reverse the direction of the physical changes, as it
is determined by Carnot’s principle. At least it behaves absolutely as would a force working
by itself in the opposite direction. Not being able to stop the course of material changes, it
nevertheless succeeds in delaying it. (Le sens où marche cette réalité nous suggère l’idée
d’une chose qui se défait ; là est sans doute un des traits essentiels de la matérialité. Que
conclure de là, sinon que le processus par lequel cette chose se fait est dirigé en sens contraire
des processus physiques et qu’il est dès lors, par définition même, immatériel ? [. . . La vie]
n’a pas le pouvoir de renverser la direction des changements physiques, telle que le principe
de Carnot la détermine. Du moins se comporte-t-elle absolument comme ferait une force qui,
laissée à elle-même, travaillerait dans la direction inverse. Incapable d’arrêter la marche
des changements matériels, elle arrive cependant à la retarder.)

Noticing that life tends to counteract the second law of thermodynamics, Bergson
qualified it as ‘immaterial’. However, he interpreted this word as meaning ‘spiritual’,
while what we oppose to material (or concrete) is ‘abstract’. Doing so leads to very
different conclusions since we remain in the field of science: we leave physics for
information science, not for metaphysics.

10.3 A Measurement as a Means for Acquiring Information

Boltzmann’s vision of a gas contained in some enclosure at the macroscopic scale
is a kind of three-dimensional billiard containing a huge number Na of balls, say
Na = 1023 as an order of magnitude. For ideal monatomic gases, the simplest case,
collisions are perfectly elastic and the energy of atoms entirely lies in the kinetic
energy of their translational movement. It turns out that billiard is a good example
of deterministic chaos (Ruelle 1991). This means that the slightest uncertainty about
the initial conditions results after some time interval in a sizeable uncertainty on the
position and speed of the balls, which moreover increases with time without limit.
The only possible description of the system is thus random, and the only measurable
parameters are statistical means, like pressure and temperature for a given volume.
Instead of, say, the Na positions and speed vectors, hence of the 6Na coordinates
which are needed for completely describing the system, only three quantities are
then available to the physicist. Between the actual situation and what can actually be
measured, there is an immense loss of information. Thermodynamics names entropy
the quantity which measures this information loss (see Eq. (6.6) in Sect. 6.3.1). It
is why Schrödinger and Brillouin, interpreting information as the negative of the
physical entropy, renamed Shannon’s measure of information negentropy, meaning
entropy affected with a minus sign.

Strictly speaking, the second law of thermodynamics which states that the physical
entropy can but increase is not relevant to the physical reality, but only concerns the
extent to which an observer can grasp it. This reminds us that more generally, contrary
to a belief of classical scientists, the statements of physics do not pertain to the reality
of objects but to how objects are observed. They actually refer to the interaction
between objects and their human observer by the agency of a measurement apparatus.
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Fig. 10.1 Scheme of a physical measurement. The arrow from the measurement apparatus to the
observed object or event is intended to represent its possible stimulation from the observer’s side

The information loss which is measured by the physical entropy is actually the
necessary condition of any observation or learning. Not being Laplace’s demons,
humans cannot process too large amounts of information, so reducing the collected
data to a few statistical means is a necessary condition for their perception by our
minds. Indeed, learning in general does not mean merely acquiring information.
It demands that a very large part of the acquired information be eliminated. We
already quoted the statement of the neuroscientist Jean-Pierre Changeux: ‘Learning is
eliminating (Apprendre, c’est éliminer)’3. The immense potential information borne
by any macroscopic physical system can only be dealt with after incurring a statistical
processing which only keeps some average measured quantities available in the form
of symbolic information. A similar remark made by James Collins as regards the
human genome and its complexity is quoted in (Check Hayden 2010): ‘We’ve made
the mistake of equating the gathering of information with a corresponding increase
in insight and understanding.’

Let us depict a physical measurement by means of Fig. 10.1 above. What is
observed, at left, belongs to the inanimate world. The observer, at right, is a living
being. The measurement apparatus is located between them, precisely at the border
between the living and the inanimate worlds. The thick arrows indicate the flow
of information between these entities. The arrow from the measurement apparatus
towards the observed object or event represents its possible stimulation from the
observer’s side. As belonging to Boltzmann’s inanimate world, the observed object or
event bears a very large potential information. The measurement apparatus converts
a fraction (a very small fraction indeed) of this potential information into symbolic
information which the observer can use.

The scheme of Fig. 10.1 is clearly a variant of Shannon’s paradigm (see Sect. 4.1),
where the observed object or event is the source, the living observer is the destination
and the measurement apparatus is the channel. This apparatus is subjected to thermal
noise just as the other blocks of this scheme but the observer, as a living being,
is assumed to be unaffected by thermal noise. (We assumed that the information
received by the observer is symbolic, which seems to imply its digital display, but
the notion of ε-entropy which pertains to any quantity known with an uncertainty of ε

(Kolmogorov 1956) enables dealing as well with measurements in analog form; see
Sect. 5.2.4.)

3 Contradicting Laplace, Brillouin and many others who implicitly liken learning to information
gathering.
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If the observed object or event belongs to the microscopic world, it is drowned
in a sea of thermal noise, so we may reasonably think of the signal-to-noise ratio
ρ associated with the measurement as very small. Then we may use to express
its capacity its small-SNR approximation C ≈ ρ/2ln(2) Sh. If on the contrary it
belongs to the macroscopic world, e.g., if the measurement consists of determining
the position of a star by means of a telescope, the object can be considered as
unaffected by thermal noise, but the measuring apparatus can assume, as belonging
to Boltzmann’s world, one among a huge number W of possible ‘complexions’
which are indistinguishable at the macroscopic scale (see Sect. 6.3.1). In this case,
the channel which models the measurement apparatus is again noisy and thus has a
finite capacity, although the signal-to-noise ratio can be much larger. Then it should
be expressed by Eq. (5.4) and no longer by its low-signal approximation. If it is
very large, 1 may be ignored in this equality and the capacity is then expressed as
(1/2) log2(ρ) Sh. In any case, the noise may with an excellent approximation be dealt
with as Gaussian because of the central limit theorem.

Let us illustrate a physical measurement with an example borrowed from Lewis
Carroll’s Alice in Wonderland. The Red Queen plays croquet using pink flamingoes
as mallets and hedgehogs as balls. This game illustrates the experimental physics
in Boltzmann’s world if we liken the mallets to the measuring apparatuses and the
balls to the observed objects. As living things, both a flamingo and a hedgehog can
assume many possible states and the one they actually assume is unpredictable. In
other words they can be dealt with but as random. Regardless of the nature of the
balls, that of the mallets alone justifies dealing with any measurement as a random
event. For this reason, any physical measurement can be modelled as a noisy channel.
It is meaningless to ask whether the observed objects are deterministic or random,
since the means for their observation are irremediably random: the Queen’s croquet
remains a random game if the hedgehogs are replaced with inert balls, as far as the
mallets remain living flamingoes.

Interpreted as a channel, a measurement apparatus has an informational capacity
which sets a limit to the information quantity which can be extracted from the inan-
imate world. The physical reality, thus, is not only seen in the special perspective
of a given measurement apparatus, according to Carlo Rovelli’s relational concepts
(which we fully endorse) (Rovelli 2004), but it is perceived only up to an impassable
horizon set by its capacity, which meets the concept of horizon-limited measurement
of Cohen-Tannoudji (Cohen-Tannoudji 1998). The information-theoretic capacity
enables quantitatively dealing with such a horizon.
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Chapter 11
Conclusion

Abstract The book deals with information as a fundamental abstract scientific entity
and attempts to popularize Information Theory so as to enable its application to
biology. It is shown that the conservation of genomes must be ensured by error-
correcting codes. If they are assumed to exist, Information Theory explains many
basic biological facts yet unexplained. Life results from information controlling
matter through biological mechanisms, and the use of information delineates the
border between the living and the inanimate.

Since more than six decades, information theory has been extremely successful
in communication engineering, its originating field, but its applications to natural
sciences remained marginal. It turns out that the main properties of information are
definitely foreign to those of the usual entities of physics, which entails that applying
information outside its originating field demands a kind of mental revolution.

Information theory is a mathematical discipline which unfortunately is ill-known
by the general public and by scientists of disciplines foreign to communication
engineering. Its abstractness makes its popularization difficult and, in my opinion,
it has never been successful, if even attempted. Its main object—information—is
moreover rather elusive.

My initial motivation for applying information theory to life came from recog-
nizing, as a communication engineer, that how biology accounts for heredity is
absolutely inadequate. Information theory is the sole possible framework for dealing
with such problems, and it shows that the conservation of genomes at the geological
timescale demands that they are endowed with error correction means. Assuming
that such means exist suffices to account for a lot of basic properties of life that biol-
ogy leaves unexplained. Having become conscious of the shortcomings of biology as
regards heredity, maybe the most important feature of life, I attempted in the present
book to make information theory accessible to biologists.

Although applying information theory to engineering problems needs only a def-
inition of the quantitative measure of information, not of information itself, I looked
for such a definition in order to facilitate its application outside engineering. As
my work progressed, it was more and more evident to me that information is cen-
tral to life, up to delineate the border between the living and the inanimate: living
things contain, use, receive, record, process and communicate information. Inani-
mate things do not, except for artefacts of human origin which are intended to this
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purpose. Moreover, I realized that defining as I did information as an abstract en-
tity necessarily residing in the physical world made it appear as providing a bridge
between the abstract and the concrete, and life as resulting from the interplay of
both. Provided its abstract character is fully recognized, information then appears
as an entity intrinsic to life, hence fundamental to biology. This conclusion is far
more general than recognizing that genomes must be endowed with error correction
means. It brings a new insight on the relationship of biology and physics, and paves
the way to a theoretical biology with high standards of rigour.

Suggesting that a yet overlooked entity should be taken as fundamental in order to
revolutionize a science established for centuries may look foolish. It is nevertheless
what this book dares, proposing to refound biology on information. The scientific
use of information is limited as yet to the field of communication engineering, which
may seem narrow although it resulted in one of the most important transforma-
tions of daily life ever witnessed by humanity. But who knows that it heavily relies
on information theory, a mathematical discipline which solved the basic problems
of communication? The semi-conductor technology, which is more visible, simply
implements its solutions. Can biology still ignore information, the fundamental en-
tity which pertains to any communication, when it becomes increasingly clear that
communicating is an essential function in the living world?

Dealing with information as an abstract scientific entity is mandatory in order to
account for properties of life entirely foreign to those of physical entities, especially
its ability to proliferate. Understanding life exclusively by means of physical concepts
appears a contrario as hopeless. It is why I claim, contrary to the opinion of most
physicists, that information is not physical.

Using as a fundamental scientific entity the abstract concept of information defined
in this book results indeed in a coherent vision of life and of its place within the phys-
ical world. Many features of life left unexplained then become mere consequences
of information theory.

Basing on information the divide between the living and the inanimate illuminates
the relationship between biology and physics, which may be beneficial to both disci-
plines. Researchers in the sciences of Nature are invited to revisit their foundations
so as to account for an overlooked though familiar entity: information.



Appendix A: Tribute to Shannon

A.1 Introduction

Claude Shannon died on 24 February 2001 of the after-effects of Alzheimer disease.
With him, one of the greatest scientific minds of the century, and even of all times,
disappears. His work exercised a deep influence, although often ill-known, in the
communication techniques hence in the world where we are living, as well as in the
thoughts of the XX-th century. I shall try, after having evoked the carrier and work
of Shannon, to show in what his approach was extraordinarily innovative and also,
which is more risky, to bring out promises for the future that this work contains. The
use I make of the first person should be understood as intended to claim a deliberate
subjectivity. I do not indeed pretend to evoke all facets of Shannon’s genius but
only those which my experience and my reflection enabled me, I hope, to grasp.
Beyond the anecdotes and picturesque details I chose mainly to evoke the creator of
information theory.

Shannon’s papers were collected by N.J.A. Sloane and A.D. Wyner (Sloane and
Wyner 1993). For convenience, I shall cite Shannon’s works by reference to this
collection. My main source of historic information, except for the few biographic
data contained in (Sloane and Wyner 1993), is the excellent and monumental doctoral
thesis of Jérôme Ségal (Ségal 1998, 2005).

A.2 His Life

Claude Elwood Shannon was born on 30 April 1916 in Petoskey, Michigan, the
United States. His father, businessman and for a time Judge of Probate, was a de-
scendant of early New Jersey settlers; his mother, a daughter of German immigrants,
was a language teacher and Principal of Gaylord High School in Gaylord, Michigan,
where he spent all his childhood. He then admires Edison, a distant cousin of the
family, and exhibits ingenuity in tinkering and inventions in mechanics, electricity
and radioelectricity. He leaves Gaylord High School in 1932 and enters Michigan
University at Ann Arbor. He obtains in 1936 the degree of Bachelor of Science in
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Electrical Engineering and Bachelor of Science in Mathematics. He then becomes a
research assistant in the Department of Electrical Engineering at the Massachusetts
Institute of Technology (MIT) near Boston, a part-time position which enables him
to continue studying. His Master’s thesis is devoted to the application of Boolean
algebra to relay and switching circuits. It is published in 1938, meets a very great
success and Shannon is awarded in 1940 the Alfred D. Nobel prize, an award given
each year in the United States to an engineer less than 30 (do not confuse . . .).

In 1938, he leaves the Department of Electrical Engineering for the Department
of Mathematics, at the instigation of the vice-chairman of MIT Vannevar Bush (who
will become a consultant to President Franklin Roosevelt). Bush was an engineer of
visionary imagination who invented machines predating the computer but failed by
the technology of the time. He was just named as chairman of the Carnegie Institution
in Washington, a branch of which was studying genetics (and eugenics, which will
be discredited only after the war has revealed the monstrous usage made of it). With
Shannon’s memoir, the design of switching circuits passed from the status of an art
to that of a science, thanks to a mathematical formulation of the problem, and Bush
hoped that a similar approach by the same Shannon would be fecund to genetics. Back
to MIT after a stay at the genetics laboratory of the Carnegie Institution at Cold Spring
Harbor, Shannon wrote, under the supervision of the algebraist Frank L. Hitchcock,
his thesis entitled ‘An algebra for theoretical genetics’1. Incidentally, Shannon’s work
was examined by Barbara Burks, a psychologist expert in the ‘genetics of geniuses’,
member of the American Eugenics Society. Her diagnosis was devoid of ambiguity:
the young Shannon is a genius she compares, in a letter to Bush in 1939, with Blaise
Pascal re-inventing Euclid’s geometry at the age of twelve (Ségal 1998).

Shannon obtains his Ph.D. degree in the spring of 1940. He spends the summer of
the same year at the Bell Telephone Laboratories (Bell Labs) where he successfully
applies the method of his 1938 memoir to simplify switching circuits (an important
stake in the design of telephonic exchanges). After he worked during the academic
year 1940–1941 at the Institute for Advanced Studies in Princeton, under the super-
vision of Hermann Weyl, he comes back to the Bell Labs in 1941, called to integrate a
research team (the main members of which were H.S. Black and H.W. Bode) working
on anti-aircraft defence systems: a pressing problem in this war time. The works of
this team eventually resulted in perfecting and manufacturing the fire control system
M6 which enabled England to limit the damage due to the German missiles V1 and
V2, and helped the Allies to get the mastering of the airs, a decisive step towards
their victory. The war context is the reason why Shannon worked also as a consul-
tant in cryptography to the National Defense Research Committee (NDRC), created
even before the United States entered the war and chaired by Vannevar Bush. For
this reason, he had the opportunity to meet several times Alan Turing. It seems that
cryptography has been for Shannon a source of inspiration but also mainly a mask,
honourable in war time, for the studies he already undertook on communication
theory and information: they did not contribute to the war effort and their possible
usefulness could not be justified but a posteriori (Ségal 1998).

1 Notice that Shannon applied here mathematics to genetics, and that the constraints of the war
reoriented his activity towards communication and cryptography.
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Bell Labs were a very fecund assembly of researchers and engineers in all do-
mains of physics and mathematics. Information theory and many other works by
Shannon, the main ones to be found in (Sloane and Wyner 1993) are not the least
production of Bell Labs. The invention of the transistor is another one, miraculously
complementary to information theory, to which it provided, as well as to computer
technique, implementation means which badly lacked in 1948. Shannon remained
15 years at Bell Labs which he left only to get teaching at MIT.

Reliable witnesses met Shannon in the corridors of Bell Labs riding a unicycle and
juggling. Beyond the anecdote, this attests the immoderate taste for playing which
was characteristic of Shannon’s personality, his interest to precarious equilibria and,
of course, a nonconformism he dared display. Maybe it was a paradoxical means to
protect himself from inquisitive people: Shannon did not open up easily and lived
retired. For instance he used to get rid of the journalists who tried to interview him
by letting them visit his collection of ‘toys’.

Shannon indeed loved play, all plays. Gambling, chess, music (he played clarinet
and collected instruments of all kind) and, maybe still more, the sophisticated toys he
constructed himself. His deep interest in roulette made him undesirable in casinos.
Should we consider financial investments as gambling? Shannon was successful here
to the point of making a fortune, which enabled him no longer to financially depend
on the Bell Labs. He was an excellent chess player (during a trip in USSR, in 1965,
he brilliantly resisted the world champion Mikhail Botvinnik, just missing the draw),
which naturally led him to get interested in chess playing machines. His 1950 paper
“Programming a computer for playing chess” (Sloane and Wyner 1993, pp. 637–656)
made him a pionneer in this field.

This theoretician of genius was also a great handyman, constructing himself play
machines, very diverse gadgets having only in common their almost surrealistic
gratuitousness. Here are a few: computing machine entirely operating in Roman
numerals, mind-reading machine, cybernetic turtles and mice learning to direct them-
selves in a maze, cycles with eccentric wheels, cycling and juggling robots, . . .The
‘ultimate machine’ alone deserves to be described: it is a coffin-shaped box with a
switch on one face. If turned on, an angry buzz rings out, the lid slowly rises, a
hand emerges from beneath and turns off the switch, thus ending what may hardly
be called the machine activity!

Let us go back to Shannon’s career. Invited professor at MIT in 1956, he became
there a permanent teacher in 1959, supervising doctoral dissertations of researchers
(many of them made a brilliant carrier in information theory and coding). He formally
remained at MIT until 1978, but with a progressively reduced activity. He then retired
in a large house near a lake at Winchester (Massachusetts), where he could devote
himself to his favourite pastimes. His last papers in the field of information theory
and coding were published in 1967, cosigned by R.G. Gallager et E.R. Berlekamp
(Sloane and Wyner 1993, pp. 385–423 and 424–454). One of his last papers published
under his sole name, in 1959, “Probability of error for optimal codes in a Gaussian
channel” (Sloane and Wyner 1993, pp. 279–324), besides being outstanding, maybe
contains a key as regards Shannon’s behaviour with respect to information theory. He
uses several times a word which is unusual in scientific literature: ‘tedious’. Shannon
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actually had to make lengthy and non-fascinating calculations so as to obtain bounds
on error probabilities (with the help of his wife Betty he explicitly acknowledges),
in contrast with the exaltation which he obviously felt with the discoveries of the
beginnings. There is no doubt that the fear of boredom was a major motivation of
this passionate lover of plays.

I feel nevertheless an impression of mystery as regards the behaviour of this
man in front of the continuation of the researches stemming from his own work,
which reminds Moses gazing at the Promised Land without entering it. His famous
theorem of channel coding stated the existence of codes making the error probability
arbitrarily small provided the source entropy is less than the channel capacity, a
result he proved using an extraordinary process which left no hope of an actual
implementation: random coding, probably inspired by cryptography and maybe also
by Darwin. Why did not Shannon contribute to the search for explicitly defined
coding means, as opposed to random, although efficient according to the criteria
of information theory? His co-authors of the aforementioned papers, Gallager and
Berlekamp, were both eminent actors of this search which was to look like the Holy
Grail quest2. Was it the awareness that many efforts had still to be made, that this work
could only be a collective, slow and rather boring task? Maybe, too, the reluctance
of Shannon to any utilitarian finality, as illustrated by the gratuitousness of the ‘toys’
he constructed?

A.3 His Work: Information Theory

I shall restrict myself to information theory, generally considered as Shannon’s main
contribution. His contributions to other fields are however by no means ignorable,
but I do not feel competent to deal with them. Moreover, I do not wish to depart from
what I believe the essentials.

It happens that a science originates in a founding text so obscure that it needs
the work of many exegetes before it is eventually understood, and then years and
efforts in order to exploit the ideas it contains only in germ. Far from being so, Shan-
non’s seminal text (“A mathematical theory of communication”, (Sloane and Wyner
1993, pp. 5–83)), issued in July and October 1948 in the prestigious journal of Bell
Labs, the Bell System Technical Journal) looks like a popularization work. Not only
did he discuss with great clarity the premises of this new science, but he developed
it so coherently and so completely that he left little to find to his successors. The
great ease of his discussion was not devoid of casualness in the mathematical treat-
ment. This way of introducing a new science was disliked by some keepers of the
mathematical orthodoxy, especially in the United States. Greater mathematicians,
but in the Soviet Union, became enthousiastic of this emerging science despite the

2 It still continues nowadays, although it enjoyed a decisive progress with the invention of tur-
bocodes; truly, the way which led to this invention was sinuous and far from the initial directions
of this research.
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cold war. Thus, Khintchin undertook more rigourously proving Shannon’s theorems
(Khintchin 1957). Kolmogorov, who made no mystery of his admiration for Shan-
non, later introduced, with the concept of ‘algorithmic complexity’, a variant of
information theory which was more complementary than competing with Shannon’s
(Kolmogorov 1965, 1968): instead of letting the measure of information depend
on probability distributions assumed to be known, Kolmogorov introduces informa-
tion as a basic concept3, freeing it from that of probability the philosophical bases
of which are rather weak. Its practical usefulness, however, is restricted since the
quantities of Kolmogorov’s theory can not be computed, at variance with Shannon’s
information.

The best account I can give of information theory consists of the analysis of its
founding text. In the very introduction of “A mathematical theory of communication”,
Shannon discards semantics from the field of his discussion, only considering as
relevant the fact that the message to be communicated in just an element chosen in
a certain set and that the communication system must work regardless of the chosen
message4. The problem of communication is thus basically of statistical nature, the
information brought by a particular message being in fact measured by the number
of messages among which it is chosen. Explicitly referring to Hartley, he shows
the interest of using a logarithmic measure, according to the practical, intuitive and
mathematical viewpoints. The choice of the logarithmic base determines the unit
used for measuring information. If the base is 2, he names this unit the bit, an
acronym for binary digit. Among other possible bases, he considers also 10, directly
consistent with decimal numbers, and Euler’s constant e which is more convenient
when integrations or derivations have to be performed (logarithms are then referred
to as ‘natural’). As a model of the communication process, he introduces the famous
scheme (or paradigm)

source—channel—destination

the ‘channel’ being actually split into the transmitter which generates a signal, a
medium subject to noise (which he names ‘channel’ in a restricted sense) and a
receiver. He then distinguishes three kinds of communication systems: the discrete
ones where both the message and signal are strings of discrete symbols or signals
(a typical example of which is Morse telegraphy); the continuous ones where both
the message and the signal are dealt with as continuous functions (as in radio and
television); and mixed ones where both discrete and continuous variables appear (as
in pulse code modulation (PCM), used for transmitting speech).

The first part is naturally devoted to discrete noiseless systems, the simplest case.
He first considers the noiseless discrete channel the capacity of which he defines
in information unit per time unit. It depends on the duration of the symbols and
the constraints which determine their succession. He then considers discrete sources
of which he gives many examples: ‘natural’ languages; discrete sources deriving
from continuous ones by quantization; discrete sources mathematically defined by

3 Which has been briefly expounded in Sect. 6.1 above.
4 See the quotation in Sect. 2.1.
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stochastic processes which specify the symbol choices and their possible mutual
dependence, especially in the form of Markov chains where the probability of a
choice only depends on the previous choices through the present state of the system.
He shows how the models of discrete source he just introduced can provide a
series of statistical approximations to English with an increased fidelity accord-
ing to whether one takes into account the frequency of letters, digrams, trigrams,
. . . , or of the frequency of words, couples, word triplets . . . . He gives examples
which look like what will become later the exercises of the Oulipo5. He graphi-
cally represents the Markov chains by transition diagrams which he then assumes
to be ergodic (he briefly explains this term). In order to evaluate the average infor-
mation rate of such a source, he states the axioms which should be satisfied by an
information measure in terms of the probabilities which describe it and thus obtains
the entropy function H = − ∑

pi log(pi). He discusses its main properties and
defines redundancy as the difference between the maximum possible entropy and
its actual value. He notices that the possibility of cross-word puzzles depends on
redundancy of the language. It is the more difficult to construct a grid, the stronger
the constraints hence the higher the language redundancy. He also considers coding
operations aimed at minimizing the average message length. He states that the lower
bound on this minimum length is proportional to the source entropy, which is the
fundamental theorem of source coding, and gives some examples of optimum source
coding.

The second part deals with noisy discrete systems, i.e., where the channel in-
put/output transition probabilities differ from 0 and 1. He then introduces the quantity
compatible with the entropy definition which measures the average information quan-
tity that the output variable provides as regards the input variable (it is called mutual
information due to its symmetry), and he defines the channel capacity as the maxi-
mum of this quantity with respect to all information sources which can be connected
to its input. He sets out the fundamental theorem of channel coding, which paradox-
ically states that errorless communication of a message is possible if a proper code
is employed, provided only that the source entropy is less that the channel capacity.
He sketches the proof of this theorem based on the extraordinary idea of random
coding. Since he cannot exhibit a particular code with good enough decoding error
probability, he considers a probabilistic ensemble of codes, computes the average
error probability for this ensemble and shows that it can be made arbitrarily small
by increasing the word length provided the above condition is satisfied. In the con-
sidered ensemble of codes, thus, there exists at least a code which is at least as good
as the average. Still better, the error probability thus obtained with a peculiar code
is almost surely (asymptotically as the word length approaches infinity) close to the
average so it vanishes. From this point of view, one can thus say that ‘all codes are
good’. Shannon comments these results, recognizes that random coding cannot be
actually implemented, insists on the role of redundancy in protecting against noise,

5 Oulipo (OUvroir de LIttérature POtentielle) is a group of writers interested in mathematical games
and combinatorics. It was founded by the mathematician François le Lionnais, and its most famous
members were Raymond Queneau and Georges Perec.
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gives examples of noisy channels and computes their capacity. Finally, he gives an
example of coding which turns out to be the (7,4) Hamming code, still unpublished
when Shannon’s paper brings out.

The third part considers the information measure for sets of functions depend-
ing on random parameters, especially the set of band-limited functions. Shannon
defines entropies simply derived from those of the discrete case by replacing sums
by integrals and probabilities by probability density functions (what is now called
differential entropies, a term that Shannon does not use). He states the properties
of these entropies homologous of the discrete ones, but notices that these quantities
now depend on the coordinate system, at variance with the discrete case entropies.

In the fourth part, he computes the capacity of a continuous channel. The mutual
information is then expressed as a difference of entropies as defined in the third part.
At variance which each of the terms in the difference, it remains unchanged with
respect to a change of coordinates, so the definition of the channel capacity does not
change. He considers the case of additive noise, and especially that of Gaussian and
white noise which is the usual model of thermal noise, when the average received
power is given. Applying his definitions, he gets the capacity per time unit of this
channel, C, probably the most famous formula of information theory (if not the best
understood), namely:

C = B log

(
S + N

N

)

,

where6 B is the bandwidth, S the average received signal power and N that of the
additive noise. He mentions that this formula was independently found by other
researchers, especially Norbert Wiener and W.G. Tuller. He also considers other
cases where he could only give lower and upper bounds of the capacity.

The fifth and last part considers the extension of what precedes to a contin-
uous source. The information rate cannot then be defined without introducing a
fidelity criterion, two messages close enough for this criterion being considered as
equivalent.

I gave a long summary of these papers, especially as regards the introduction and
the first two ones, which contain the main innovations and the meaning of which is
not made obscure by mathematical difficulties, in order to show the extreme richness
of their content. Another paper by Shannon, maybe less famous, remarkably com-
plements the preceding ones: “Communication in the presence of noise” published
in 1949 (Sloane and Wyner 1993, pp. 160–172). Starting from the sampling theorem
(often wrongly ascribed to Shannon, although he refers to previous works7) which
states that signals of spectrum limited to a frequency band of width B can be exactly
recovered from the values (or samples) they assume at instants separated by a time
intervals of 1/2B, he introduces a geometric representation of signals and of additive
white Gaussian noise as vectors in a high-dimensional Euclidean space. Some un-
clear properties of analog modulation systems found an obvious explanation in this

6 I changed the original notation so as to comply with the one I used in Eq. (5.5) of this book.
7 It seems that it was already known by Augustin Cauchy (1789–1857).
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representation, which also was much later used for the design of systems combining
modulation and coding. Shannon uses it to sketch a direct proof of the capacity of the
additive white Gaussian noise channel, i.e., to prove that the information rate must
be less than the above expression of this channel capacity so that no errors occur.
Shannon also discusses his very smart solution, referred to as water-filling, to the
problem of communication in the presence of non-white noise, i.e., where the noise
spectral density is not a constant in the signal band.

A.4 Shannon’s Influence

Engineers and scientists interested in information theory formed under the banner
of the Institute of Radio Engineers (IRE, later become after a merger with another
society, IEEE) a working group which started in 1953 publishing a journal, the IRE
Transactions on Information Theory. From a few hundreds of pages for each of the
first years, its volume did not cease to increase up to more than 2,000 pages yearly
now8. This quantitative increase has nevertheless coincided with a narrowing of the
field which was covered. The issues of the first years were indeed much more eclectic
than they are today. Problems of signal theory, automatics or psycho-plysics found a
place in it, while these topics are now relevant to other journals. A reason of this trend
is a reaction against a fashion effect, ephemeral by definition, I shall more lengthily
deal with below. The problem was to avoid that works really useful to information
theory be diluted in the flood of papers about more or less relevant applications, and
the policy of restricting the scope prevailed, after debates between the members of
the working group to which Shannon participated, as we shall see it.

I already mentioned the reluctance initially expressed by certain mathematicians
with respect to Shannon’s work. On the contrary, it was enthusiastically welcome
by many researchers of other fields: genetics, neurology, psycho-physics, psychol-
ogy, economy, linguistics, sociology . . . It was unfortunately an irrational fad, the
intensity of which was often matched by the lack of understanding. The vocabulary
of information theory then had often a decorative role and papers like “Information
theory, photosynthesis and religion” proliferated (this emblematic title, from an edi-
torial of the IRE Trans. on Information Theory in which Peter Elias9 mocked at this
fad (Elias 1958), is of course fictitious but it is hardly caricatured). Even the undeni-
able influence that Shannon’s work had on first rate linguists and philosophers, like
Roman Jakobson or Claude Lévi-Strauss, remained limited to its more superficial
aspects. The deepest and most innovative ideas of information theory, especially the
possibility of errorless communication despite the channel perturbations and the ex-
traordinary method of random coding to prove it seem to have escaped any comment
by established philosophers.

8 In 2000; this number is more than twice than that in 2011.
9 One of the most important researchers in the field. He invented arithmetic source coding and
convolutional error-correcting codes.
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Shannon himself reacted against the fashion he unwillingly initiated. He thus
wrote an editorial10 in the same journal in March 1956 (Sloane and Wyner 1993,
p. 462), which I shall more lengthily comment when dealing with the future of
information theory. Despite its brevity, it seems indeed to me that it opens up a
program much of which remains to be performed.

One said once that the fecundity of a work is measured by the number of mis-
understandings it gave rise. For this criterion, Shannon’s work is immense! The
obituaries just published in the French newspapers eloquently witness it, if I may
write so. They are few, short and, far from helping to know his work, show the
misunderstandings it suffers11. This also shows how the importance of Shannon’s
work was underestimated: rarely the futility of the media was so obvious.

Certain of these misunderstandings have as sole origin an erroneous reading. Thus,
a myth that almost nothing justifies sees in Shannon an exalter of the binary: the core
of his theory would be the possibility of transmitting a message, regardless of its
nature, by the means of binary symbols or signals. I wrote ‘almost’. Shannon could
not imagine how journalists would dress up his work and he imprudently proposed
to name ‘bit’, an acronym for ‘binary digit’, the unit of information quantity which
results of choosing 2 as logarithmic base (he also contemplated other bases, as we
have seen it). A digit and a unit are objects of different nature and defining ‘bit’ as the
acronym for binary unit could maybe have avoided the misunderstanding. It turns
out that ‘bit’ is usually employed for binary digit in technical jargon, even when it
bears no information or an information quantity less than the binary unit. Everybody
aware of information theory knows that and distinguishes with no risk of error the
two meanings of the word ‘bit’ (personally, I use the word ‘shannon’ for the binary
unit, which avoids any ambiguity). Hasty and inexpert readers unfortunately fell in
the trap which was unwillingly set. I do not know if Shannon has been angry or,
more probably, amused at that.

Other misunderstandings have a much deeper origin which it is important to
analyse. The role of semantics is a point of major divergence between certain of
the authors who tried to apply information theory outside its original domain, and
the now unanimous opinion of engineers. The wide development of information
theory in the mathematical and technical fields amply justified the exclusion of se-
mantics which is a premise in Shannon’s theory. This exclusion actually appears
as a methodological necessity which enables distinguishing the information from
both the message which bears it and the meaning ascribed to it. On the contrary,
many people coming from different horizons, especially biologists, have felt when
reading Shannon the exclusion of semantics as a congenital defect to be repaired.
This misunderstanding is not recent. Under the title “The mathematical theory of
communication” (the definite article substituted for the indefinite one cancelled the
modesty of the original title), the two 1948 papers were reprinted as a book as early
as 1949 (Shannon and Weaver 1949). A lengthy postface by the biologist Warren

10 A significant quotation of which may be found in Sect. 2.5 above.
11 In contrast with the excellent obituary of Calderbank and Sloane published by Nature (Calderbank
and Sloane 2001).
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Weaver, then administrator of the Rockefeller foundation, has been appended to
them. Shannon claims that he discards semantics in his very introduction, in a few
sentences, arguing that the semantic content of a message has no incidence on how
the messenger works. On the contrary, most of the comments by Weaver deplore the
exclusion of semantics and suggest remedies for it. Rather strangely, the two authors
of the book thus express irreconcilable points of view. Time did not attenuate this
misunderstanding. I shall try later to analyse the reasons for it at the same time I
shall outline perspectives for the future.

A.5 Shannon’s Legacy

I believe that Shannon theory has a great future outside the technical domain, as
applied to the sciences of nature. I shall in the following restrict myself to uphold
this opinion as regards biology. Many engineers do not share this opinion, which
moreover contradicts the one which currently prevails among biologists.

Answering his (few) interviewers, Shannon claimed his atheism. He saw no
fundamental difference between the machines and the living things, including hu-
mans. His tinkering was maybe intended to imitate nature (widely anticipating
on François Jacob), in a pathetic way which made intuitively perceptible the dis-
tance between the technical means available in the middle of the XX-th century
and that of nature, generally endowed by evolution of an extreme refinement. He
thus could not be hostile in principle to the idea of applying information theory to
biology12.

The short editorial of the IRE Transactions on Information Theory I mentioned
above is entitled ‘The bandwagon’. Shannon has mocked there at speculations which
referred to his work, calling for patience and modesty. Asserting as a personal opin-
ion the rightfulness of applying his theory to sciences of nature, he suggests however
that this approach will be fruitful only after information theory will be firmly enough
established in its domain of origin. One cannot but admire how lucid is this edito-
rial. Most of the speculations Shannon denounced fell indeed into a well deserved
oblivion, whereas information theory has confirmed its validity and its fecundity in
the mathematical and technical domains; at the same time, the attempts to apply
information theory to other sciences became more and more infrequent. One may
regret this withdrawal into an ivory tower, but hope that the reflection acquired in the
technical domain will eventually enable applying it to the sciences of nature freed
from the naivety and vague approximations of the first attempts.

Shannon’s mentors Barbara Burks and Vannevar Bush, as well as Norbert Wiener
who had a less direct but inescapable influence on him, were fervent advocates
of interdisciplinarity. If one defines information theory as the science of symbol
sequences (with Shannon and Kolmogorov) then it can obviously be applied to bi-
ology: Crick and Watson identified in 1953 the DNA molecule as the bearer of the

12 All the more his doctoral dissertation dealt with genetics.
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hereditary information, made of a string of quaternary symbols. That attempts aimed
at applying information theory to biology failed until now is not a reason to give up
(I would like to say: on the contrary). The initial fad having passed and the misun-
derstanding I mentioned as regards the role of semantics being stronger and stronger,
the biologists turned away from information theory. After its too discreet triumph in
the technical domain, I think it is now mature for eventually fecund applications to
biology and perhaps physics. A mandatory condition for the success of this ambi-
tious plan is a clear awareness of the origin of the misunderstandings which as yet
hindered it.

The comments by Weaver in (Shannon and Weaver 1949) gave the first example
of a misunderstanding between information theorists and biologists which got worse
with time. Weaver worries about the congenital inability of information theory to
take semantics into account. Shannon accepts it, on the contrary. All the subsequent
development of information theory has shown he was right, since the exclusion of
semantics never appeared as a drawback or a brake. Information plays with respect
to semantics the role of a container, and should not be confused with its symbolic
supports, i.e., messages, and still not with the physical supports of the messages.
Much more than mastering the mathematical difficulties of some of its chapters (but
the discrete finite case, the most important one, does not suffer such difficulties), it is
the understanding of the status of information as an intermediate which is the key of
its fruitful application. Information is indeed abstracted from the set of supports and
messages which can bear it, but it is also the bearer of a meaning which is completely
independent of it and not amenable to a quantitative measure. The difficulty of
information theory is thus not so much intrinsic than conceptual, insofar as it is the
epistemological status of the main quantity it deals with which is far from obvious.
At the turning point between the abstract and the concrete, information revealed itself
as an unexpected intermediate. This status is now well perceived by the engineers
who have learned by experience that ‘it works’, but not at all by the upholders of
other disciplines, especially physicists and biologists.

This reflection shows how deeply innovative is Shannon theory. With the discovery
of a measurable quantity as fundamental as hidden, it is a new world that it opened
to science.

References

Calderbank, R., & Sloane, N. J. A. (2001). Claude Shannon (1916, 2001). Nature, 410(6830), 768.
Elias, P. (1958). Two famous papers. IRE Transactions on Information Theory, 4(3), 99.
Khinchin, A. I. (1957). Mathematical foundations of information theory. Dover.
Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems

of Information Transmission, 1, 4–7.
Kolmogorov, A. N. (1968). Logical basis for information theory and probability theory. IEEE

Transactions on Information Theory, IT-14(5), 662–664.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana:

University of Illinois Press.
Sloane, N. J. A., & Wyner, A. D. (Eds.). (1993). Claude Elwood Shannon, collected papers.

Piscataway: IEEE Press.



Appendix B: Some Comments about
Mathematics

B.1 Physical World and Mathematics

The relationship of mathematics with physics is rather ambiguous. On the one hand,
modern physics (say, since Galileo) heavily depends on mathematics. The ‘laws of
physics’ are invariably expressed by mathematical equalities which involve physical
quantities and mathematical operations. For instance, Newton’s law of gravitation
reads

f = (G × m × m′)/(d × d) = Gmm′/d2

where m and m′ denote numbers which measure the masses of two material bodies
which are at a distance d apart, f denotes the attractive force they exert on each other,
and G is a fundamental constant the numerical expression of which depends on the
units of force, mass and length which are employed. The mathematical operations
of multiplication and division are represented in the expression in the middle by ×
and /, respectively, while the usual formulation at right can be understood only if it
is known that the sign × is left implicit and that d2 = d × d.

On the other hand, mathematics is a science of its own which deals with enti-
ties abstractly defined by sets of axioms, without any reference to objects of the
physical world, hence foreign to the sensible intuition. Mathematical concepts often
originated in practical problems (e.g., counting objects or measuring field surfaces),
but mathematics evolved towards increasing abstraction. Among the mathematical
abstractions which have no physical counterpart, we may cite infinity and the re-
lated concept of limit. Henri Poincaré noticed in (Poincaré 1902) that ‘The essential
character of recursive reasoning is that it contains, so to speak as compacted in a sin-
gle formula, infinitely many syllogisms (Le caractère essentiel du raisonnement par
récurrence c’est qu’il contient, condensés pour ainsi dire en une formule unique, une
infinité de syllogismes.)’. It turns out that recursive reasoning is absolutely needed
for introducing as basic a concept as that of natural numbers (see Sect. 2.4.2). Given
a natural number, adding 1 to it results in a larger one, regardless of how large is
the given number, which clearly shows that natural numbers are infinitely many.
The non-physical concept of infinity is thus met at a very elementary step of the
mathematical construction.

Explicating the relationship between mathematics and physics is indeed a very
difficult philosophical problem which has no universally accepted solution. Most
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physicists consider mathematics as a tool which they daily use. It works extremely
well, often beyond what can be reasonably expected. It occurs even that a purely
mathematical result predicts the existence of some physical object (for instance, the
existence of the neutrino was predicted from mathematical considerations decades
before its experimental evidence could be established). Physicists thus generally do
not question the use of mathematical concepts. However, they use them in a non-
mathematical way, often ignoring distinctions made by mathematicians, especially
as regards the condition of validity of their theorems, which may be quite subtle but
are mandatory from a mathematical point of view.

On the other hand, mathematicians are often, explicitly or not, upholders of
Platonic realism: mathematical objects have for them an intrinsic existence entirely
foreign to the physical world. But then why can these objects be very efficiently used
in physics? Eugene Wigner entitled a famous paper ‘The unreasonable effectiveness
of mathematics in natural sciences’ (Wigner 1960), and most physicists deal with the
effectiveness of mathematics as a mystery which is relevant to metaphysics, hence
foreign to their domain of competence. This alleged mystery is probably made less
obscure if we think of physics as a means for a human observer to acquire information
on the natural world, information being as stated in Sect. 6.4 an entity which bridges
the concrete and the abstract.

B.2 On Numbers

In order to illustrate how far from the sensible intuition mathematics has become,
we briefly describe the process of successive abstractions which resulted in introduc-
ing the several families of numbers starting from natural integers (signed integers,
rational, irrational, transcendental, ‘real’, . . . , numbers), each family extending the
previous one. We can thus realize how mathematical objects are human-made ab-
stract artefacts, far from any physical reality. We briefly expounded in Sect. 2.4.2 how
natural integers are introduced by recursion. Despite their interest, these numbers
have to be extended in many ways so as to be useful in many mathematical instances.

The first main motivation for extending the concept of number is to introduce new
elements such that the inversion of the basic operations of addition and multiplication
becomes possible. Let us first consider the addition. Subtraction, denoted by the mi-
nus sign −, results by definition in the difference c = a−b, such that c+b = a, where
a and b are elements of the set IN of natural integers (defined here as including 0;
IN∗ will denote the same set deprived of 0). However, no element c of IN such that
c + b = a exists if b is larger than a. Appending to IN a set of elements such that
this equality always results in specifying an element c defines the set of signed inte-
gers ZZ. This set consists of the union of IN and the set of negative integers, each of
which is associated with an element a of IN∗ which is denoted by −a (a is then said
positive). Then each element a of IN∗ has an additive inverse −a (referred to as its
opposite) such that a + (− a) = 0.

Similarly, ZZ is extended into a set Q such that any non-zero element a of ZZ
has a multiplicative inverse, denoted by 1/a or a−1, such that (1/a) × a = 1. The
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numbers which belong to the set Q are referred to as rational. Then the quotient

a/b
�= a × (1/b) of any two elements a and b of ZZ has a meaning provided b �= 0.

Each non-zero element of Q having an additive and a multiplicative inverse, it is said
to possess the field structure.

Although the set Q now contains the additive and multiplicative inverses of the
basic operations effected on natural numbers, it turns out that other operations cannot
always be inverted within the set of rational numbers Q. The squaring operation,

defined as a2 �= a × a, where a is a natural number (i.e., belongs to IN∗) cannot
be inverted within Q when a = 2, a case of historical significance since it ruined
the Pythagorean system which was based on ratios, i.e., on elements of Q. The
inverse of the squaring operation effected on a, denoted by

√
a or a1/2, does not

belong to Q for a = 2 and is therefore referred to as irrational. In other words, the
equation x2 − 2 = 0 defines a number x which does not belong to Q and, more
generally, the roots1 of an algebraic equation xn + an−1x

n−1 + . . . + a0 = 0, where
an−1, . . ., a0 belong to ZZ, when they exist2, do not necessarily belong to Q and are
then irrational. (The left hand side of this equation is referred to as a polynomial and
x as an indeterminate.) Further researches showed moreover that certain numbers
that mathematics can define, like π (the ratio of the circumference of a circle to its
radius), or e (the base of the natural logarithms; see Sect. B.3.1 below), are not roots
of algebraic equations. They are referred to as transcendental. Mathematicians were
thus led at the end of the XIX-th century to define real numbers so as to include
transcendental numbers besides irrational ones. The mathematical ‘measure theory’
has later shown that the rational numbers are a set of ‘measure 0’ within that of real
numbers, although they are dense everywhere (i.e., any interval between two real
numbers, however small, contains infinitely many rational numbers). Real numbers
have thus a very strange ‘fine structure’, absolutely foreign to the sensible intuition.
Especially, the mathematical concept of real number completely disagrees with the
intuitive feeling of continuity of, say, space or time intervals. Using algorithmic
complexity arguments, Chaitin has shown moreover that the so-called real numbers
are generally uncomputable (Chaitin 2005). They have nothing in common with any
physical reality and, from this point of view, the word ‘real’ is a misnomer.

B.3 Definitions and Notations in the Book

Far from these difficult issues, what follows is mainly intended to simply remind
some definitions and to explicate some notations used in the book.

1 The roots of an equation are defined as the values of x such that the equality holds.
2 Defining the set of ‘complex numbers’, such that any algebraic equation has always complex
roots, resulted in another extention of the number concept. A complex number, earlier referred to
as ‘imaginary’, can be interpreted as a couple of ordinary numbers endowed with specific addition
and multiplication rules. We do not use complex numbers in this book. Beware that the adjective
‘complex’ in this meaning has no relationship with the algorithmic complexity of Sect. 6.1.
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B.3.1 Exponentials and Logarithms

Let � be a positive integer, and b be any positive number. The product b × b × . . . b,
in which the number of factors is �, is referred to as b to the power � (or as the �-th
power of b) and denoted by b�, where � is referred to as the exponent. From the
very definition, b�+�′ = b� × b�′

, where �′ also is a positive integer. This notation
can be directly extended to non-positive exponents: b0 = 1, and b�−�′ = b�/b�′

.
The methods of mathematical analysis enable extending these equalities to any real
numbers �, �′, . . . Moreover, given any positive real number b > 1 (referred to
as the ‘base’) and another positive real number a, there always exists a number
� such that b� = a. There is a one-to-one correspondence between � and a (for
a given value of b), so � is a function of a which is referred to as its logarithm
and denoted by logb (a). The subscript b is intended to recall that, besides a, it
depends on the chosen base b. The main properties of the logarithmic function
are logb (1) = 0, logb (a × c) = logb (a) + logb (c) where a and c are positive
real numbers. As a consequence, logb (1/a) = − logb (a). The main usefulness of
the logarithmic function is to convert a product of numbers into the sum of their
logarithms. The choice of the base b is arbitrary. Changing it for another base b′ > 1
results in dividing the logarithm to the base b by the positive constant logb (b′),
namely:

logb′ (a) = logb (a)

logb (b′)
,

a direct consequence of the definitions.
The function logb (x) tends to minus infinity when x approaches 0, so the function

y = x logb (x) assumes for x = 0 the indeterminate form −0 × ∞. It can be shown
that the limit of x logb (x) when x approaches 0 is 0, and it is why the entropy
function H (p1, p2, . . . , pn) assumes the value 0 when any one of its arguments is 1,
which entails that all others are 0. In particular, the binary entropy function defined
in Sect. 4.2.3 by Eq. (4.11), H2(p), assumes the value 0 when its argument p is 0
or 1.

In this book, we mainly use logarithms to the base 2, in accordance with the choice
of the information unit as binary (see Sect. 4.2.2). A convenient logarithmic base
generally used in mathematical analysis is the constant e, a transcendental number
which approximately equals 2.718. Raising this constant to the power x defines the
exponential function y = ex of the variable x, usually denoted by y = exp(x). This
function has the remarkable property that it equals its derivative, i.e., dy/dx = y(x).
Let us recall that the derivative dy/dx of a function y(x) is the limit of δy/δx, for δx

tending to 0, where δy
�= y(x + δx) − y(x) (this limit exists only if y(x) is regular

enough). The derivative of a function y(x) measures how fast y increases in terms
of x. Being equal to its derivative, the exponential function y = exp(x) can thus be
successively derived arbitrarily many times.

Logarithms to the base e are referred to as ‘natural’ and denoted by ln (·). The
logarithmic function y = ln(x) is the inverse of the exponential one, meaning that
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ln[exp (x)] = x. As a consequence, the derivative of ln(x) is 1/x, showing that the
increase of ln(x) is the smaller, the larger x. Natural logarithms and exponentials are
used in Sect. 5.5.8 above.

B.3.2 Representing Symbols and Sequences

Endowing the alphabet with the finite field structure We now very briefly deal
with how symbols and sequences can be represented. For dealing with its symbols
as mathematical objects, an alphabet of finite size α must be endowed with some
mathematical structure. The most convenient one is that of finite field. Remember
that the two operations of addition and multiplication can be effected on rational
or real numbers and that each element a of it has an inverse −a for the addition
and, if a �= 0, an inverse 1/a for the multiplication. A set of elements having these
properties is said to possess the field structure. Similarly, it is especially useful to
endow the α elements of an alphabet with the field structure, endowing its element
with the same operations. This is not possible for any value of the integer α. The
simplest case is α = 2; the binary alphabet is then {0, 1}. There is a single non-zero
element, 1, which is its own multiplicative inverse. As regards addition, the rule
valid for the integers can be applied when 0 is added since it results in an element
of the alphabet. However, the ordinary sum 1 + 1 = 2 is meaningless since 2 does
not belong to the alphabet. Using addition modulo 2, such that 1 + 1 = 0, results
in an element of the alphabet hence endows the binary alphabet with the desired
field structure. Notice that if the elements 0 and 1 are interpreted as the classes of
equivalence of even and odd integers, respectively, the ordinary addition of integers
is transformed into addition modulo 2.

Defining finite fields for alphabets with more than 2 elements is possible only if
α is a prime, or a prime raised to an integer power. No finite fields exist for other
values of α. Thus, there exist finite fields with 2, 3, 4, 5, 7, 8, 9, 11, . . . elements,
but not with 6, 10, 12, . . . elements. The addition rule is modulo α only when α is
a prime, but not if it is a prime raised to an integer power larger than 1. Defining
the addition and multiplication rules of a finite field when α is not a prime relies
on algebraic properties which would need lengthy preliminary definitions. We omit
them here since the only examples given in this book involve symbols of the binary
alphabet.

Representing sequences As regards the representation of sequences, we use poly-
nomials where the coefficients are the alphabet symbols (as elements of a finite field),
instead of ordinary integers as in usual polynomials as introduced in Sect. B.2, or
formal series which extend the definition of polynomials to an infinite number of
terms. We denote by D the indeterminate, as usual in the coding literature. Then a
term aDi in the polynomial or the formal series indicates that the i-th symbol of the
sequence is the coefficient a (beware that if a = 0, the term is omitted, as in ordinary
algebraic notation). We used this representation in Sects. 3.4.2 and 5.5.4.
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B.3.3 Probabilities

Games of chance are typical human activities which rely on the observation that
repeating some gesture can in certain circumstances result in several possible out-
comes, the actually realized one being unpredictable. Such an event, referred to as
random, seems to defy (or deny) causality. As an example, think of playing dice.
Perfectly controlling all the mechanical parameters when throwing a dice would ac-
tually result in a deliberately chosen outcome, but no one can avoid slight differences
when repeating several times the same hand movement, and these differences are
so to speak amplified in the dice trajectory up to make the outcome unpredictable.
Gambling like roulette could be similarly analyzed. As regards playing cards, the
precise position of each of the cards in a pack, after they are shuffled, cannot be
deduced from their initial position. (Of course, there are cheaters or conjurers, but
we assume that the play is fair, and especially that the dice or the card pack are so.)
Non-scientific thought attributes the result of such a game to fate, an obscure and re-
lentless supernatural entity. Probability theory originated in attempts to scientifically
analyse games of chance.

Probability theory associates with a random event a number p, 0 ≤ p ≤ 1,
referred to as its probability, which measures how likely is its occurrence. Pre-
cisely defining probability is difficult because it is almost impossible to avoid logical
circularity. However, it is intuitively clear that, when a fair dice is thrown or a
card is drawn from a fair 32-card pack, each possible outcome has a probabil-
ity of 1/6 or 1/32, respectively. It is a matter of experience that, if the event is
repeated many times, the average frequency of occurrences is close to these prob-
abilities. Moreover, the laws of large numbers tell how close to probabilities are
the measured frequencies by assessing a probability to the difference between an
actual frequency and the corresponding probability. Even if the theory is based
on a questionable definition of probabilities, a consistent system of axioms en-
ables dealing with probabilities as true mathematical objects. The wide applicability
of the probability theory and its importance lie in the fact that the ‘determinis-
tic chaos’, which pertains to statistical mechanics, cannot be distinguished from
‘true’ randomness. Probability theory thus provides the adequate tools of statistical
mechanics.

Joint, conditional and marginal probabilities Let us consider two non-
independent events. As an example, assume that a card is drawn from a 32-card
pack and consider the following two events: the card is an ace (denoted by A), and
the card is a spade (S). The event (A, S) designates the realization of both A and S,
so then the chosen card is the ace of spade, hence the probability of this event is 1/32.
The probability Pr(A, S) is referred to as the joint probability of the events A and S.
The events A and S have as probabilities Pr(A) = 1/8 and Pr(S) = 1/4 (referred to in
this context as marginal probabilities). We may think of the event (A, S) as realized
in two steps: first, the card is an ace; if it is an ace, then it is a spade. The probability
of the event ‘to be a spade if the chosen card is an ace’ is referred to as the conditional
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probability of S given A, and denoted by Pr(S|A). Its numerical value is 1/4. Clearly:

Pr(A, S) = Pr(S|A)Pr(A) = Pr(A|S)Pr(S), (B.1)

where the second equality results from the obvious symmetry of the problem. Any of
these equalities is referred to as Bayes rule, and is valid for any couple of joint events.
It has been written as Eq. (4.7) in Sect. 4.2.2 and is used above in many instances.

Discrete random variables A random variable X can assume n values x1, x2, . . . ,
xn (n is assumed to be finite; the extension to countably many values is possible
but we do not need it). The set of possible values {x1, x2, . . . , xn} is referred to
as the sample space. The probability that X assumes the value xi , for 1 ≤ i ≤ n,
is denoted by pi : Pr(X = xi) = pi . The set of probabilities {pi} is referred to as
the probability distribution of the random variable X. The event X = xi is referred
to as the realization of xi . For instance, the random variable Xdice associated with
a dice can assume the integer values from 1 to 6, each with a probability of 1/6.
The realizations of x1, x2, and xn are mutually exclusive events. The probability of
occurrence of any one among several such events is the sum of their probabilities.
Since one of the realizations of x1, x2, and xn is assumed to necessarily occur,

n∑

i=1

pi = 1. (B.2)

The average value of X, referred to as its mean or its (mathematical) expectation, is
defined as

E[X]
�=

n∑

i=1

pixi . (B.3)

It is also denoted by X̄. The random variable XC = X − X̄ is referred to as ‘centred’
since its mean is 0.

According to this definition, E[Xdice] = 3.5, and the corresponding centred
random variable assumes the values −2.5, −1.5, −0.5, 0.5, 1.5, and 2.5.

The standard deviation of a random variable X measures how broadly distributed
it is. It is defined as the square root of its variance, which is itself defined as the
expectation of the square of the centred random variable XC, namely:

E[(X − X̄)2] = σ 2 �=
n∑

i=1

pi(xi − X̄)2. (B.4)

The variance of Xdice, for instance, equals 8.75/3 and its standard deviation is
1.707825 . . .

Let us now consider another random variable, Y , which assumes the m values
y1, y2, . . . , ym with probabilities q1, q2, . . . , qm, and such that

∑m
j=1 qj = 1. The

random variable (X, Y ) is defined as the joint realization of xi , yj for all pairs of
indices 1 ≤ i ≤ n, 1 ≤ j ≤ m. The probability Pr(X = xi , Y = yj ) is referred to as
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the joint probability of X and Y and denoted by pi,j . If the events X = xi and Y = yj

are independent, the probability of one of them is not affected by the realisation of the
other one. Then their joint probability is the product of their individual probabilities:
Pr(X = xi , Y = yj ) = Pr(X = xi) × Pr(Y = yj ). However, the probability of the
realization of, say, X may depend of the realization of Y . This event is referred to
as the realization of X conditioned on Y , and denoted by X|Y . The probability of
xi conditioned on yj is denoted by Pr(X = xi |Y = yj ). According to Bayes rule
(B.1), Pr(X = xi , Y = yj ) = Pr(X = xi |Y = yj )Pr(Y = yj ) = Pr(Y = yj |X =
xi)Pr(X = xi) for all possible values of i and j , namely 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Continuous random variables The reception of a binary signal in the presence of
Gaussian noise led us to meet continuous random variables in Sect. 3.3. Then, instead
of assuming one of some finite number of values, the value that the random variable
X assumes is some real number x. This case involves mathematical difficulties, so
we suppose that the conditions for which the statements below are true are satisfied.

Instead of a set of discrete probabilities {xi}, we consider now the probability that
X belongs to an infinitesimal interval (x, x + dx). In the simplest cases, this proba-
bility is proportional to dx, hence is infinitesimal. It is then expressed as pX(x)dx,
where pX(x) is referred to as the probability density function of X. This formulation
is meaningful only if the function pX(x) is regular enough, and it is fortunately so
if this function is Gaussian. For instance, we expressed in Sect. 3.3 the probability
density function of thermal noise of variance σ 2 by the centred Gaussian function of
Eq. (3.7):

pX(x) = g(x; σ 2) = 1

σ
√

2π
exp

(
x2

2σ 2

)

.

Instead of the finite sum of probabilities being equated to 1 according to (B.2), we
have for a continuous random variable the integral

∫

pX(x)dx = 1, (B.5)

where the integration is effected on the whole interval where the probability density
function is defined; e.g, it is in the Gaussian case (−∞, +∞). The expectation of X

is now defined by means of an integral, namely,

E[X] = X̄
�=

∫

xpX(x)dx, (B.6)

instead of the discrete sum (B.3). Its variance is similarly defined by an integral
which replaces the discrete sum (B.4):

E[(X − X̄)2] = σ 2 �=
∫

p(x)(x − X̄)2dx. (B.7)

In the case of two continuous random variables the Bayes rule reads

pX,Y (x, y) = pX|Y (x|y)pY (y) = pY |X(y|x)px(x). (B.8)
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Similar relations exist if one of the variables, say X, is discrete and the other one
continuous. We met such a situation in Sect. 3.3, with X being the discrete input of
a channel and Y its output in the presence of additive continuous noise.
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Appendix C: A Short Glossary of Molecular
Genetics

Some readers may be unfamiliar with the chemistry of molecular genetics. Its most
basic keywords are gathered in the following glossary. The reader should be warned
that its content is very simplified and that many statements incur exceptions or other
restrictions to their validity. Italic words inside a definition refer to another entry of
the glossary.

adenosine (A)

See nucleic base.

amino-acids Any amino-acid is made of a carbon atom (denoted by Cα) to which
are attached a hydrogen atom, an amino group (NH2), a carboxy group (COOH) and
a radical named ‘side chain’ R specific to it, which may assume a variety of forms
(see Fig. C.1).

H     N

H

Cα

H

R

OH

O

C

Fig. C.1 Chemical formula of an amino-acid. R denotes its side chain

Amino-acids are constituents of proteins, which contain only the 20 amino-acids
listed in the following Table. The first column indicates the 3-letter acronym of
the amino-acid, while the fourth column indicates the number of codons which
correspond to it according to the genetic ‘code’. The amino-acids have been put
into 4 classes: hydrophobic (abbreviated as h-phobic), hydrophilic (h-philic), acid
(bearing a negative electric charge), and base (bearing a positive charge). Except for
glycine which has a single hydrogen atom as side chain, they all are chiral molecules
(i.e., they can assume two forms which are symmetric with respect to a plane in
the three-dimensional space, like an object and its image in a mirror), but only their
L-form occurs in proteins. There is no known reason why these amino-acids were
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‘chosen’ rather than others nor why the L-form has been ‘preferred’. Cystein, whose
side chain is the group SH, can form disulphide bridges with another cystein molecule
close to it in the 3-dimensional space due to the protein folding. A protein results
from the proper folding of a polypeptidic chain, a unidimensional polymer made of
a sequence of amino-acids listed in the Table.

acr. name class # acr. name class #
Met methionine h-phobic 1 Tyr tyrosine h-philic 2
Trp triptophan h-phobic 1 Ile isoleucine h-phobic 3
Asp aspartic acid acid 2 Ala alanine h-phobic 4
Glu glutamic acid acid 2 Gly glycine h-phobic 4
Asn asparagine h-philic 2 Pro proline h-phobic 4
Cys cysteine h-phobic 2 Thr threonine h-philic 4
Phe phenylalanine h-phobic 2 Val valine h-phobic 4
Gln glutamine h-philic 2 Arg arginine base 6
His histidine base 2 Leu leucine h-phobic 6
Lys lysine base 2 Ser serine h-philic 6

chromosomes See genome.

codon See genetic code.

complementary base pairs See nucleic base.

cytosine (C) See nucleic base.

deoxiribonucleic acid (DNA) In its usual double-helix structure, the DNA polymer
is made of two strands of a unidimentional polymer where phosphate groups alternate
with deoxyribose, a sugar, according to a double-helix pattern. They are referred to
as the ‘backbones’ of DNA. Between the two backbones, complementary base pairs
A–T and C–G are tied to two opposite sugar molecules by covalent bonds. We
thus may think of the double-stranded DNA as a twisted ladder, with the backbones
as uprights and the complementary base pairs as steps. Its overall width is about
2 nanometers (10−9 meter, abbreviated as nm), the distance between two base pairs
is 0.34 nm and a complete turn of the double helix takes about 10 base pairs. Fig. C.2
is a plane representation of this structure as a ladder, i.e., ignoring its helix shape.

The two complementary base pairs A–T and G–C have a plane structure depicted
in Fig. C.4 below. Their plane is orthogonal to the axis of the double helix.

eukaryotes As opposed to prokaryotes, they are living beings with cells where the
genome is contained inside a nucleus physically separated by a membrane from the
remainder of the cell, and having many other distinctive features like the presence of
mitochondria. They may be unicellular like yeasts or amiboeae, but all multicellular
beings like plants and animals are eukaryotes. Moreover, genes organized according
to the exons-introns model generally belong to eukaryotes, and only a fraction of
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Fig. C.2 Ladder representation of double-strand DNA. The black disks represent phosphate groups
and the pentagons, deoxyribose molecules (sugars). The polymers made of alternating phosphate
groups and sugars are referred to in the text as ‘backbones’. Rectangular boxes represent the
nucleotides A, T, G and C. The dotted horizontal lines between nucleotides of opposite strands
represent hydrogen bonds. The vertical arrows indicate the direction of reading

the whole genome is made of genes, i.e., contributes to the synthesis of proteins.
Again at variance with prokaryotes, the double stranded DNA is packed into nucle-
osomes, which consist of a histone octamer acting as a spool with almost two turns
(165-nucleotide long) of double stranded DNA wrapped around it. (Histones are pro-
teins associated with DNA in chromosomes.) Moreover, nucleosomes themselves are
packed together in higher order structures generally referred to as ‘fibers’. Another
distinguishing feature of the eukaryotic cell is the presence of a ‘cytoskeleton’, i.e.,
a kind of molecular armature in a state of dynamic instability. The eukaryotic cell
is much more complicated that the prokaryotic one and probably appeared almost 2
billion years later.

exons See gene.

gene Precisely defining a gene is not easy. At the very beginning of genetics, a
gene was thought of as an ‘atom’ of Mendelian heredity but its nature was unknown.
Since the discovery that DNA is the bearer of genetic information, we may say that
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a gene is a sequence of nucleic bases which is transcribed into messenger RNA. Its
most important function is the synthesis of a protein which results from the further
translation of the messenger RNA into a sequence of amino-acids which directs the
synthetics of a protein, through the genetic ‘code’. However, some genes only gener-
ate specific RNA strands having other functions. In eukaryotic cells, the genes often
comprise regions which actually direct the synthesis of a protein, named ‘exons’,
which alternate with regions which do not, called ‘introns’, and are considered by
many biologists as useless. When a gene has this structure, the RNA strand which
results from the DNA transcription is ‘spliced’, i.e., the regions in it which corre-
spond to the introns are cut out and the remaining RNA pieces are glued together,
making up the messenger RNA which actually directs the protein synthesis. Some-
times, different alternative splicings may result in several proteins being synthesized
from the same gene.

genetic ‘code’ or mapping The genetic ‘code’ is a mapping from triplets of succes-
sive nucleic bases (referred to as codons) into the set of 20 amino-acids which are
the elementary components of proteins, plus the command which stops the protein
synthesis. Fig. C.3 shows this mapping.

Since there are 43 = 64 codons for an output alphabet of size 21, an output
symbol can be designated by several codons. Indeed, the number of codons which
designates an amino-acid depends on this amino-acid and can be 1, 2, 3, 4 or 6. Due
to this many-to-one correspondence, changes in the sequence of nucleic bases do not
necessarily result in a change in the sequence of amino-acids of the protein. Since
this mapping is definitely not a code in the engineering sense, we used quotes every
times we referred to the genetic ‘code’. The genetic ‘code’ is universal as being the
same for all living beings (with very few exceptions, the most notable one being slight
differences which concern mitochondria). It is the standard genetic ‘code’ which is
shown in Fig. C.3. The genetic ‘code’ shows some regularities but seems to some
extent arbitrary. Although it is not completely random, it may have resulted, at least
in part, from contingent events.

genome The total DNA that a living being possesses in (almost) each of its cells,
generally organized in chromosomes. The genome is replicated every time a cellular
division occurs. The chromosomes are structures where DNA is packed together with
proteins, especially histones. Prokaryotes generally possess a single circular chro-
mosome, at variance with eukaryotes which have several rod-shaped chromosomes.
In eukaryotic cells, the word ‘genome’ generally refers to the nucleic DNA, but the
mitochondria also possess their own DNA which is independently replicated.

guanine (G) See nucleic base.

histones See gene.

introns See gene.

mitochondria A eukaryotic cell possesses a number of organelles named mitochon-
dria which provide it with ATP (adenosine triphosphate) molecules, the source of
energy of the cells. There are strong reasons why mitochondria are probably former
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Fig. C.3 The genetic ‘code’. This chart indicates how codons of messenger RNA specify amino-
acids and what codons stop the synthesis of a protein. The letters A, C, G, U denote the nucleic
bases. Any codon is a 3-nucleic-base word read from center to periphery. The 3-letter acronyms at
the periphery indicate amino-acids. For instance, UAC ‘codes’ for the amino-acid tyrosine (Tyr),
while UAA stops the process. AUG both starts the synthesis process when it is preceded by a proper
control message referred to as ‘promoter’ and ‘codes’ for the amino-acid methionine (Met)

prokaryotes which became symbiotic with other cells so as to make up the eukary-
otic cell, about 1,500 million years ago. They still have their own genome which is
replicated independently of the host cell, using a version of the genetic ‘code’slightly
different from the standard one.

nucleotide or nucleic bases The molecular elements which act as information bear-
ing symbols in DNA and RNA. Three nucleic bases are common to DNA and RNA:
adenosine, abbreviated as A, guanine (G) and cytosine (C). The fourth nucleic base
is thymine (T) in DNA and uracil (U) in RNA. T and U have similar structure (a
methyl group CH3 of T is merely substituted for a hydrogen atom in U). As regards
the chemical structure, A and G are purines, i.e., 2-cycle molecules denoted by R,
while C, T, and U are pyrimidines, single-cycle molecules denoted by Y. A purine
and a pyrimidine together can constitute a complementary base pair where the two
molecules are tied together by two hydrogen bonds for the pairs A–T or A–U, by
three hydrogen bonds for the pair C–G. The complementary base pairs A–T and
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DNA. The purines (A and G) are at left and the pyrimidines (T and C) at right. In RNA, the uracil
molecule (U) replaces thymine (T), which is identical to it except that the methyl group CH3 at
top right is replaced by a hydrogen atom H. Dashed lines represent hydrogen bonds. The mutual
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C–G have almost the same geometrical dimensions, and the angles of their bonds
to the DNA ‘backbones’ are close enough to enable their location anywhere in the
double helix structure of DNA. Their chemical structure is shown in Fig. C.4 above.

The reason why precisely these molecules are used for bearing information in
DNA and RNA is unknown. The words ‘nucleic base’ or ‘nucleotide’ may be thought
of as misnomers since the DNA of a prokaryotic cell is made of nucleotides although
it has no nucleus. These words have merely a historical origin since these bases were
discovered in the nucleus.

nucleosome See eukaryotes.

polypeptidic chain A unidimensional polymer made of a sequence of amino-acids.
How two amino acids are linked together after a water molecule is eliminated is
represented in Fig. C.5.
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Fig. C.5 Two amino-acids and their linking according to a peptide bond. R and R’ denote their
side chains. Their linking results from eliminating the water molecule shown inside the box. Other
amino-acid molecules can be similarly linked at the left and the right, thus resulting in a polypeptidic
chain

prokaryotes Living beings where the genome is not physically separated from the
remainder of the cell. They all are unicellular beings: bacteria or archaea. Almost the
full length of their genome contributes to the synthesis of proteins. They have most
often a single circular chromosome. There is evidence that they predated the much
more complicated eukaryotes by about 2 billion years.

protein A protein results from a polypeptidic chain generally made of a few
hundreds of amino-acids by an appropriate folding which gives it a unique three-
dimensional shape. It is made of several substructures like α-helices and β-sheets,
which themselves form higher structures named ‘domains’. Disulphur bridges be-
tween cystein molecules help maintaining the protein spatial structures, as well as
the attraction of electric charges borne by polar molecules.

Proteins are the most important constituents of the living matter, having both
a structural and enzymatic (catalytic) role. Especially, DNA replication as well as
transcription and translation are catalyzed by proteins. Therefore, proteins catalyze
their own synthesis.

purine (R) See nucleic base.

pyrimidine (Y) See nucleic base.

ribosome It is the part of the cell, made of a large complex of RNA and proteins,
which recognizes the transfer RNA associated with a codon and puts the corre-
sponding amino-acid at its place in the polypeptidic chain during the process of
translation.

ribonucleic acid (RNA) The ribonucleic acid is similar to DNA except that the
sugar molecule is ribose instead of deoxiribose, and that the nucleic base uracil (U)
replaces thymine (T) (see Fig. C.4). Its double-helix structure is less stable than that
of DNA and it is most often found in the single-stranded form. RNA assumes many
functions: the most important are ‘messenger RNA’ which copies in complementary
form the genetic message borne by a DNA strand (see transcription), ‘transfer RNA’
which associates the proper amino-acid with each codon of the messenger RNA
in the process of protein synthesis, and ‘ribosomic RNA’ as part of the ribosome
machinery (see translation).

thymine (T) See nucleic base.
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transcription The process of copying, in complementary form, one of the strands
of DNA of a gene into a messenger RNA molecule. In the case of a gene made of
exons and introns, the transcription results in a ‘pre-messenger’RNA molecule which
has to be spliced to result in the proper messenger RNA which is actually used in the
translation process.

translation The process of synthesis of a polypeptidic chain which, properly folded,
becomes a protein. The polypeptidic chain derives from the sequence of nucleic
bases of a messenger RNA which itself resulted from the transcription of the genetic
information borne by the DNA of a gene according to the genetic ‘code’. It involves
a transfer RNA associated with each codon and the operation of the ribosome.

uracil (U) See nucleic base.
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